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movements. This resulted in a statewide BSFR of 1,655 pc/h/ln, lower than the HCM default. 

Significant regional differences were observed, with district-specific BSFRs ranging from 1,537 

pc/h/ln to 1,773 pc/h/ln. For TWSC intersections, data from 26 four-leg intersections were used to 

estimate CH (7.1 to 10.1 sec.) and FH (5.9 to 6.5 sec.), which were both substantially higher than 

HCM defaults, reflecting conditions at low-volume minor roads. The study highlights the limitations 

of applying national default values and emphasizes the importance of using locally estimated 

parameters for more effective traffic management. The findings support the adoption of district-

specific BSFRs for signal timing and capacity analysis, as well as the application of the estimated CH 

and FH values for TWSC intersection design, with appropriate HCM adjustments. 
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Abstract 

Although the Highway Capacity Manual (HCM) provides default values for its 

methodologies, it also states that these values represent typical national values and that 

conditions within a state, region, or community may differ. When default values are 

applied frequently in analyses, the use of local default values can reduce the uncertainty in 

the analysis results. This study addresses the need for accurate intersection capacity 

analysis in Louisiana, where reliance on default Highway Capacity Manual (HCM) values 

can lead to inefficiencies due to regional variations in traffic conditions. The research 

focused on estimating key traffic flow parameters: base saturation flow rate (BSFR) for 

signalized intersections, and critical headway (CH) and follow-up headway (FH) for two-

way stop-controlled (TWSC) intersections. A comprehensive database for signalized and 

stop-controlled intersections was developed by integrating data from multiple sources, 

including the extensive traffic data collection 511 system, highway database, and DOTD 

representatives. The study analyzed 51 signalized intersections, adjusting for factors such 

as lane width, heavy vehicle presence, and turning movements. This resulted in a 

statewide BSFR of 1,655 pc/h/ln, lower than the HCM default. Significant regional 

differences were observed, with district-specific BSFRs ranging from 1,537 pc/h/ln to 

1,773 pc/h/ln. For TWSC intersections, data from 26 four-leg intersections were used to 

estimate CH (7.1 to 10.1 sec.) and FH (5.9 to 6.5 sec.), which were both substantially 

higher than HCM defaults, reflecting conditions at low-volume minor roads. The study 

highlights the limitations of applying national default values and emphasizes the 

importance of using locally estimated parameters for more effective traffic management. 

The findings support the adoption of district-specific BSFRs for signal timing and 

capacity analysis, as well as the application of the estimated CH and FH values for TWSC 

intersection design, with appropriate HCM adjustments. 
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Implementation Statement 

Transportation planners in Louisiana will gain critical insights into traffic flow at signalized 

and stop-controlled intersections, improving network-level planning and simulation accuracy. 

This study helps prevent inaccurate capacity and traffic flow estimates, supporting better 

decision-making. However, the commonly used base saturation flow rate (BSFR), along with 

critical headway (CH) and follow-up headway (FH), often fails to reflect localized traffic 

conditions due to deteriorating traffic and evolving vehicle performance, which alters driving 

behavior. Inaccurate parameters can lead to inefficient traffic operations, miscalculated fair 

share contributions, and suboptimal signal timings, resulting in defective green time splits 

and offsets in coordinated signals. Applying nationwide values for these parameters is 

unsuitable for intersections with unique driving behaviors and traffic conditions. A deeper 

understanding of local HCM parameters will enhance capacity estimates and inform future 

intersection improvements. This will enable planners to design intersections and signal 

timings more effectively, potentially reducing congestion. 
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Introduction 

Intersections are key components of the traffic network, enabling the movement of drivers, 

pedestrians, and bicyclists across routes. Intersection capacity, defined as the maximum 

number of vehicles passing through an intersection in a given time, influences road network 

efficiency. It affects traffic flow and throughput, indicating the number of vehicles traveling 

through an intersection within a specified period. Intersection capacity also relates to 

congestion and delay, reflecting the time vehicles wait before proceeding [1]. Planning, 

design, operation, and management decisions of a road network depend on intersection 

capacity [2]. 

Intersection capacity depends on geometric design, traffic control measures, weather 

conditions, and other factors. Traffic performance and level of service at an intersection are 

assessed through the relationship between delay or queue length and capacity [3]. Measuring 

the capacity of an existing intersection under real-world traffic conditions is challenging. To 

estimate intersection capacity, parameters must be determined based on the intersection type. 

Intersection capacity parameters include saturation flow rate (SFR), critical headway (CH), 

and follow-up headway (FH). SFR is used for signalized intersections, while CH and FH 

estimate the capacity of stop-controlled intersections. Estimation of these parameters 

influences traffic flow analysis. Capacity estimation allows planners to design and manage 

intersections by predicting congestion, optimizing signal timings, and deciding on 

infrastructure improvements. 

The Highway Capacity Manual (HCM) outlines concepts, guidelines, and procedures for 

computing the capacity and level of service of highway facilities, including highways, transit, 

bicycle, and pedestrian facilities [4]. It provides methodologies for estimating and measuring 

the capacity of signalized and stop-controlled intersections, along with default values for 

intersection capacity parameters. These default values are used instead of field data to 

evaluate intersection capacity. Research indicates that default values may not represent local 

conditions and highlights the need for region-specific data to improve capacity computations 

[5] [6]. The HCM notes that intersection capacity parameters at locations can differ from 

national averages due to regional or site-specific characteristics. 

SFR is a parameter for estimating the capacity and performance of signalized intersections. It 

aids in designing signal timings to manage traffic flow at junctions [7]. SFR is influenced by 

factors such as the number and width of lanes, lane usage, roadway grades, and constraints 
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like conflicting vehicle or pedestrian traffic, on-street parking, and bus operations. Saturation 

flow rates vary by movement, time, and location. The SFR at an intersection can differ from 

the ideal SFR values in the HCM [7]. Research shows that the base SFR in regions often 

deviates from the HCM's recommended value of 1,900 passenger cars per hour per lane 

(pc/hr/ln) [6] [8] [9] [10]. 

CH and FH are important gap acceptance parameters at stop-controlled intersections, 

influencing capacity and safety [11]. CH is the minimum time interval in the major traffic 

stream needed for one minor street vehicle to enter, while FH is the time gap between the 

departure of one minor street vehicle and the next, using the same gap in major street traffic, 

assuming continuous queuing on the minor street. These parameters depend on driver 

behavior and traffic conditions, affecting traffic performance and efficiency. HCM suggests 

CH values from 4.1 to 7.3 sec. and FH values from 2.2 to 4 sec. Studies show differences 

between observed CH and FH values and HCM-recommended values, indicating the need for 

region-specific data to improve accuracy [12].  

Louisiana’s traffic conditions are influenced by its geographical, cultural, and economic 

factors, with roadway infrastructure serving commuters and freight traffic across diverse 

regions, where varying roadside development impacts traffic dynamics. These factors 

warrant the development of localized intersection capacity parameters to enhance traffic 

analysis accuracy and reflect Louisiana’s unique conditions. Estimated intersection capacity 

parameters with locally observed data will facilitate network-level planning and optimize 

transportation system performance. Short-term transportation improvement programs, 

spanning a 4-year horizon, and long-range transportation plans at both the statewide and 

metropolitan levels, covering a 20-year horizon, evaluate roadway system performance to 

identify infrastructure improvements based on projected demand, while targeted corridor 

assessments by state and local agencies address intersection safety and operational concerns 

to enhance system performance in priority areas [13]. Through an ongoing effort to 

implement Transportation Systems Management and Operations (TSMO) in Louisiana, 

agencies are analyzing regional transportation as an interconnected network, improving 

traveler and system performance through better management of the multimodal system, 

where updated intersection capacity estimates can further support these initiatives. 
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Literature Review 

To advance the effort to effectively estimate intersection capacity parameters, a 

comprehensive review was conducted to gain insights from past studies on the estimation of 

intersection capacity parameters across the United States and other countries. This review 

focused on exploring the methodologies used to estimate these parameters and factors 

identified influencing them. The review involved a thorough examination of peer-reviewed 

journals, as well as state and federal reports documenting relevant research, with special 

emphasis on studies based on empirical data collected from field installations rather than 

theoretical approaches. The remaining sections of the literature review are divided according 

to the intersection types: signalized intersections (SFR) and stop-controlled intersections (CH 

and FH). 

Signalized Intersections 

Saturation flow rate (SFR) is a fundamental parameter in determining the capacity of 

signalized intersections. As defined by the Highway Capacity Manual (HCM), SFR is the 

number of vehicles per hour per lane that could pass through a signalized intersection if a 

green signal was displayed for the full hour, the flow of vehicles never stopped, and there 

were no large headways. The HCM provides guidelines for estimating SFR and recommends 

a base value of 1,900 passenger cars per hour per lane (pc/h/ln), which is commonly applied 

in practice. However, this base value may not fully reflect localized traffic conditions, as the 

HCM acknowledges that input parameters can vary based on regional characteristics. To 

address this, numerous studies have estimated region-specific SFRs using both HCM-

recommended methods and alternative approaches developed by researchers. Several of these 

studies have highlighted the importance of accurate SFR estimation for effective 

transportation planning and have identified additional factors, beyond those considered in the 

HCM, that significantly influence SFR. The following section provides a comprehensive 

review of relevant findings from these studies. 

Methodologies Adopted to Estimate SFR 

Several methods are available for estimating SFR, each offering distinct advantages 

depending on data availability, traffic conditions, and technological resources. A commonly 

used method is field measurement, which involves collecting data directly from intersections 
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through on-site observations and manual counts of vehicle movements during the green 

signal phase. Another widely applied approach is regression analysis, wherein statistical 

models are used to estimate SFR based on various influencing factors such as lane width, 

traffic composition, and area type. With advancements in technology, real-time data 

collection methods have also emerged, enabling dynamic and continuous estimation of SFR 

under varying traffic conditions. Each of these methods presents specific strengths and 

limitations, and their applicability depends on the context and objectives of the SFR 

estimation. The following sections provide a detailed description of these methods. 

HCM Methodologies. The Highway Capacity Manual (HCM) outlines two primary methods 

for estimating SFR: the adjustment method and the saturation headway/field measurement 

method. The adjustment method begins with a base saturation flow rate of 1,900 pc/h/ln, 

which assumes ideal conditions, including a 12-ft. lane width, absence of heavy vehicles, flat 

grade, no on-street parking, no bus stops, uniform lane utilization, and no turning vehicles 

[11]. This base value is then modified using adjustment factors to account for site-specific 

conditions such as lane width, approach grade, heavy vehicle percentage, and other 

geometric and operational attributes; see Equation 1. This method is especially useful for 

generating quick SFR estimates in scenarios where detailed field data is unavailable. 

𝑠 = 𝑠0 𝑓𝑤 𝑓𝐻𝑉𝑔 𝑓𝑝 𝑓𝑏𝑏 𝑓𝑎 𝑓𝐿𝑈 𝑓𝐿𝑇 𝑓𝑅𝑇 𝑓𝐿𝑝𝑏 𝑓𝑅𝑝𝑏 𝑓𝑤𝑧 𝑓𝑚𝑠 𝑓𝑠𝑝 (1) 

where,  

𝑠 = base saturation flow rate (pc/h/ln);  

𝑓𝑤 = adjustment factor for lane width;  

𝑓𝐻𝑉𝑔 = adjustment factor for heavy vehicles in traffic stream and approach grade;  

𝑓𝑝 = adjustment factor for the existence of a parking lane and parking activity 

adjacent to the lane group;  

𝑓𝑏𝑏 = adjustment factor for blocking effect of local buses that stop within the 

intersection area;  

𝑓𝑎  = adjustment factor for area type;  

𝑓𝐿𝑈 = adjustment factor for lane utilization;  

𝑓𝐿𝑇 = adjustment factor for left-turn vehicle presence in a lane group;  

𝑓𝑅𝑇 = adjustment factor for right-turn vehicle presence in a lane group;  

𝑓𝐿𝑝𝑏 = pedestrian-bicycle adjustment factor for left-turn groups;  

𝑓𝑅𝑝𝑏 = pedestrian-bicycle adjustment factor for right-turn groups;  

𝑓𝑤𝑧 = adjustment factor for work zone presence at the intersection;  

𝑓𝑚𝑠 = adjustment factor for downstream lane blockage; and 

𝑓𝑠𝑝 = adjustment factor for sustained spillback. 
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The field measurement method, also known as the saturation headway method, estimates the 

SFR by taking the reciprocal of the average saturation headway. Saturation headway is 

defined as the average time gap between vehicles in a queue, measured after the fourth 

vehicle and continuing until the last vehicle in the initial queue clears the signalized 

intersection [11]. This approach requires direct observation and measurement of traffic flow 

during the green phase at a specific intersection. Headways are typically recorded starting 

from the fourth vehicle to exclude the effects of start-up delay and acceleration associated 

with the lead vehicles, thereby providing a more stable representation of normal traffic flow 

conditions. The mean headway, averaged over multiple signal cycles, is then used to compute 

the SFR using a defined formula; see Equation 2. This method is particularly valuable when a 

detailed, accurate, and site-specific estimation of SFR is required. 

𝑆 =
3600

ℎ𝑠
 

(2) 

where,  

ℎ𝑠= Saturation headway. 

TRRL Method. The Transport and Road Research Laboratory (TRRL) developed a method 

for estimating saturation flow at signalized intersections that relies on classified vehicle 

counts without the need to convert vehicles into Passenger Car Units (PCU) [14]. This 

method involves observing three saturated green intervals and recording the number of 

vehicles passing through the intersection during each interval. The SFR is then calculated by 

dividing the number of vehicles in the middle interval, which is assumed to best represent 

stable flow, by the duration of that interval. This approach provides a simplified and practical 

means of estimating saturation flow using basic observational data. 

Regression Method. The regression method for estimating SFR [15] [16] [17] [18] involves 

analyzing the relationship between traffic flow variables, with SFR as the dependent variable 

and factors such as saturated green time, vehicle classifications, and lost time as independent 

variables. By applying regression analysis, predictive models are developed to estimate SFR 

based on these inputs, enabling site-specific adjustments and providing insights into how 

various conditions influence intersection capacity. Researchers have extensively applied 

regression techniques to identify and quantify the impact of different factors on SFR [19] 

[20] [21] [22]. Specifically, multiple linear regression is commonly employed to develop 
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predictive models that incorporate a wide range of influencing parameters, allowing for 

adaptation to specific traffic, geometric, and operational characteristics [23] [24]. 

Other Methods. In recent years, researchers have utilized real-time data and advanced 

analytical techniques, such as neural networks, to estimate SFR. For example, Qi and Hu [25] 

developed a real-time SFR estimation model using loop detector data combined with a 

Markov Chain framework to capture traffic headway states. Their model utilizes a Hidden 

Markov Model (HMM) to identify stable headways within each signal cycle, effectively 

transforming SFR estimation into a state identification problem. Similarly, Wang et al. [26] 

proposed an automated video-based method for estimating SFR, modeling vehicle headways 

as a time series and applying ordinary least squares (OLS) regression to estimate key 

parameters. Their approach includes an iterative quantile-based filtering technique to remove 

abnormal data and improve accuracy. 

Building upon these advancements, Wang et al. introduced a neural network-based model to 

dynamically account for variations in SFR and its influencing factors [27]. By analyzing 

traffic flow characteristics, the model was trained and validated, demonstrating its 

adaptability to fluctuating traffic conditions. In the context of developing countries, where 

heterogeneous and mixed traffic conditions are prevalent, traditional methods such as those 

prescribed by the HCM may be insufficient. To address this issue, Mondal et al. developed an 

optimization-based model for estimating Passenger Car Unit (PCU) values and saturation 

flow under mixed traffic conditions [18]. Their regression-based prediction model, validated 

using field data, demonstrated high accuracy and applicability in complex traffic 

environments. 

Factors Affecting SFR 

SFR is influenced by a wide range of factors, encompassing both the geometric and 

operational characteristics of intersections, as well as regional traffic conditions. While the 

HCM provides standardized adjustment factor values, these may not adequately capture 

localized variations in certain contexts [10]. Moreover, several studies have identified 

additional factors that significantly impact SFR but are not accounted for in the HCM 

framework [6] [9] [28]. As such, a comprehensive understanding of these influencing factors 

is essential for accurate and context-specific SFR estimation. This section reviews the key 

factors affecting SFR as identified in prior research. 
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Geometric Factors 

Effect of the number of lanes. The influence of the number of lanes on SFR has been 

extensively examined, with consistent findings reported across multiple studies [9] [28] [29]. 

In general, SFR increases with the number of lanes on an approach. For example, McMahon 

et al. [28] found that the SFR for through movements on three-lane approaches was 

approximately 1,910 pc/h/ln, compared to 1,790 pc/h/ln for two-lane approaches and 1,670 

pc/h/ln for single-lane approaches. Figure 1 illustrates the adjustment factors based on these 

results, derived using a base SFR of 1,800 pc/h/ln. Similarly, Bester et al. [29] reported that 

increasing the number of through lanes from one to two significantly improved SFR. 

Additionally, Bonneson et al. observed that individual lanes within a multi-lane approach 

may exhibit varying SFRs, with curb lanes often displaying lower values due to external 

friction caused by nearby driveways, pedestrians, and roadside elements [9]. Overall, the 

findings indicate that increasing the number of lanes generally leads to a higher average SFR 

across all lanes. 

Figure 1. Adjustment factor for number of lanes based on McMahon data [28] 

 

Effect of lane width. Lane width is a significant factor influencing SFR, as recognized by 

the HCM. The HCM provides adjustment factors to account for the negative impact of 

narrower lanes and the positive impact of wider lanes on SFR, as outlined in Exhibit 19-20 of 

the 7th edition. These findings have been supported by several researchers. Potts et al. [30] 

observed that narrow lanes reduce SFR by approximately 4.3% compared to standard lane 
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widths (3.3–3.6 m), while wider lanes (4.0 m or more) increase SFR by approximately 4.4%. 

Shao et al. [31] also highlighted the substantial influence of lane width, particularly on the 

SFR of exclusive lanes. However, Dunlap [10] noted that the HCM’s adjustment factors may 

be inadequate in certain locations, underscoring the importance of using locally calibrated 

data to more accurately reflect site-specific conditions. 

Effect of turning radius. The influence of turning radius on SFR has been emphasized in 

several studies [31] [32] [33]. Although the HCM provides adjustment factors for right- and 

left-turning movements, these do not explicitly account for the effect of turning radius. 

Bonneson noted that the HCM tends to underestimate the impact of sharp radii and 

overestimate the influence of flatter radii, potentially leading to inaccurate capacity 

estimates. In his study, Zegeer [33] proposed equivalency factors of 1.19 for right-turning 

movements with a turning radius less than 30 ft. and 1.10 for larger radii, compared to the 

HCM's recommended factor of 1.18, highlighting discrepancies in existing guidelines. 

Additionally, Shao et al. [31] found that turning radius has a significant effect on the capacity 

of exclusive turn lanes, with capacities decreasing when the radius falls below 45 m. Based 

on these findings, researchers recommend that turning radius be explicitly considered as a 

critical factor when estimating SFR, especially for turn lanes, to ensure more accurate 

capacity assessments. 

Effect of approach grade. Previous studies have demonstrated that approach grade 

significantly influences SFR [29], with uphill slopes generally reducing SFR due to slower 

vehicle acceleration and downhill slopes increasing it as a result of higher approach speeds. 

The HCM addresses this effect by providing adjustment factors (see Exhibits 19-9 and 19-10 

of the HCM) to account for changes in vehicle performance on grades. However, several 

researchers have argued that the actual impact of gradient on SFR is greater than what the 

HCM adjustment factors suggest [29] [34].  

Effect of pedestrian crossing. Pedestrian conflicts can have a significant impact on vehicle 

turning movements at intersections, particularly for right-turning vehicles. Roshani et al. [35] 

examined the effect of pedestrian volume on the SFR of right-turn movements at signalized 

intersections and identified a linear relationship between pedestrian flow and SFR, with 

higher pedestrian volumes leading to reduced vehicle flow. This reduction occurs as vehicles 

are often required to yield to pedestrians in the crosswalk, disrupting the continuity of traffic 

flow. Similarly, Zegeer [33] found that the adjustment factor for basic right-turn movements, 

recommended as 0.85 by the HCM, should be further reduced in proportion to the volume of 

conflicting pedestrians. 
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Traffic Composition 

Effect of right-turning vehicles. The presence of right-turning vehicles affects the SFR in 

both shared through and right-turn lanes as well as exclusive right-turn lanes. As the 

proportion of right-turning vehicles in the traffic stream increases, SFR tends to decrease due 

to additional lane-changing conflicts and reduced lane utilization efficiency [9]. However, 

Bonneson et al. [9] observed that the actual impact of right-turning vehicles on SFR is less 

severe than indicated by the HCM, suggesting that the HCM may overestimate their negative 

effects on intersection capacity.  

Effect of heavy vehicles. Heavy vehicles, due to their larger size and distinct operational 

characteristics compared to passenger cars, have a notable impact on SFR within traffic 

streams. Bonneson et al. [9] found that the presence of heavy vehicles, such as trucks and 

buses, reduces SFR, with the extent of the reduction increasing proportionally with their 

percentage in the traffic flow. McMahon et al. [28] further quantified this impact, reporting 

that the presence of a single heavy vehicle in the queue can lead to an 8–11% decrease in 

SFR. 

Effect of non-local drivers. Zhao et al. [36] investigated the impact of non-local drivers, 

defined as drivers unfamiliar with the roadway facility, on SFR at signalized intersections. 

Their findings revealed that intersections with a high proportion of non-local drivers 

experienced up to a 19% reduction in SFR. This effect is particularly relevant in recreational 

or tourist areas, where a substantial number of non-local drivers are present, highlighting the 

importance of considering driver familiarity as a factor in SFR estimation. 

Environmental Conditions 

Effect of side friction. Various sources of side friction, including driveways, pedestrians, 

roadside developments, signage, utility poles, and other roadside objects located near moving 

traffic, have been shown to significantly reduce SFR of rightmost (i.e., curbside) lanes. 

Bonneson et al. [9] observed that the curb lane within a through lane group typically exhibits 

a lower SFR compared to adjacent lanes. Similarly, McMahon et al. [28] reported that high 

levels of side friction can lead to a 3–11% reduction in SFR in the rightmost through lane 

relative to the leftmost lane. These findings emphasize the importance of accounting for 

roadside friction when estimating SFR, particularly in urban environments where such 

disruptions are more prevalent. 
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Effect of weather. A study conducted by Dunlap [10] demonstrated that weather conditions 

have a measurable impact on SFR. Data collected from the same intersections under both dry 

and rainy conditions revealed that the average SFR during dry conditions was 1,717 pc/h/ln, 

whereas rainy conditions resulted in a reduced SFR of 1,646 pc/h/ln, indicating a decline of 

approximately 70 pc/h/ln. Figure 2 illustrates the comparison of SFR during dry and wet 

conditions. Similarly, Sun et al. conducted a study in China and found that saturation flow 

decreased by 3–7% during rainy weather compared to clear conditions [37]. These findings 

establish a clear relationship between weather conditions and SFR, emphasizing the need to 

adjust ideal SFR values in regions with frequent adverse weather to improve the accuracy of 

capacity estimates and enhance traffic management strategies. 

Figure 2. Comparison of SFR during dry and wet conditions [10] 

 

Regulatory Factors 

Effect of speed limit. Studies have shown that speed limits have a significant influence on 

SFR, with higher speed limits generally associated with increased SFR, and lower speed 

limits resulting in reduced flow rates [29] [38] [39]. A study by the Texas Transportation 

Institute [9] reported that SFR decreases by approximately 9 pc/h/ln for every 1 mph 

(equivalent to 5.6 pc/h/ln per 1 km/h) reduction in speed limit. Similarly, Bester and Meyers 

[29] conducted a study in South Africa and found that SFR increases by 8.5 pc/h/ln per 1 

km/h increase in speed limit. Despite this observed relationship, the HCM does not currently 

account for speed limits in its SFR estimation procedures. These findings suggest the need to 
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incorporate speed limit adjustments into SFR estimation methodologies to improve the 

accuracy of capacity assessments, particularly in areas with varying posted speed limits. 

Effect of camera enforcement. A study by Al-Mistarehi et al. [32] conducted in Jordan 

identified camera enforcement as a unique and significant factor affecting SFR. The presence 

of enforcement cameras was found to influence driver behavior, making drivers more 

cautious and reducing the incidence of red-light violations. While this enhances safety, it also 

results in a lower number of vehicles clearing the intersection during the green phase, thereby 

leading to a reduction in SFR. 

Effect of traffic pressure. Previous studies have extensively examined the impact of traffic 

pressure, often quantified by queue length, on SFR. Traffic pressure is typically characterized 

by more aggressive driver behavior, particularly during high-volume periods such as rush 

hours, in which drivers aim to minimize travel time by accepting shorter headways during 

queue discharge. Bonneson [40] found that longer queues at intersections are associated with 

higher SFRs, as aggressive driving behavior leads to reduced headways. In a subsequent 

study, Bonneson and Messer [39] developed a traffic-pressure adjustment factor to account 

for the influence of traffic volume on SFR. Their findings indicated that intersections with 

lower volumes and shorter queues generally exhibit lower SFRs, while intersections with 

higher volumes and longer queues experience increased SFRs due to heightened traffic 

pressure. This phenomenon highlights a positive relationship between traffic volume and 

SFR, driven by behavioral adaptations in high-demand conditions, as illustrated in Figure 3. 



—  23  — 

 

Figure 3. Traffic pressure adjustment factors [39] 

 

Demographic Factors 

Effect of area population. Area population, defined as the number of residents in the 

vicinity of an intersection or roadway facility, has been identified by several researchers as a 

significant factor influencing SFR [6] [33] [41]. Findings suggest that SFR tends to be lower 

in areas with smaller populations, potentially due to differences in driving behavior, roadway 

familiarity, and traffic demand. Zegeer proposed adjustment factors based on population size: 

1.00 for areas with populations over 100,000, 0.91 for populations between 20,000 and 

100,000, and 0.83 for populations under 20,000 [33]. Similarly, Cartagena et al. reported that 

SFR in medium-sized towns was approximately 8% lower than in large towns and 21% lower 

in small towns [6]. They recommended adjustment factors of 0.92 for medium towns and 

0.79 for small towns. Although the HCM does not currently consider area population in its 

SFR estimation procedures, these studies indicate that population size may serve as a 

meaningful predictor, particularly in regions with varying population densities. Incorporating 

this factor could improve the accuracy of SFR estimates in diverse geographic contexts. 

Effect of area type. The Highway Capacity Manual (HCM) includes an adjustment factor of 

0.90 to account for the reduced efficiency of intersections located in central business districts 

(CBDs). This factor reflects the generally lower SFRs observed in these areas due to 

increased pedestrian activity, constrained geometry, and higher variability in driver behavior. 
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However, several studies have evaluated the relationship between SFR and area type, finding 

that while SFRs in CBDs are indeed lower, the adjustment factors derived from empirical 

data often differ from the HCM’s recommendation [33] [41] [42]. Table 1 provides a 

comparison between the adjustment factors suggested by the HCM and those identified in the 

literature for various area types. For instance, Le et al. [20] and Zegeer [33] found that 

residential areas typically exhibit higher SFRs compared to outlying commercial districts and 

CBDs, likely due to less congestion, fewer conflicts, and more familiar driving environments. 

Additionally, Le et al. [20] reported that recreational areas show significantly lower SFRs, 

similar to those observed in CBDs. This reduction is attributed to the high proportion of non-

local drivers in recreational areas, whose unfamiliarity with the roadway system contributes 

to longer headways and more cautious driving behavior. 

Table 1. Comparison of area type adjustment factor 

Studies Residential CBDs Recreational 

HCM [11] 1 0.9 Not available 

Le et al. [20] 1 Not available 0.92 

Zegeer [33] 1.01 0.99 Not available 

Agent and Crabtree [41] 1 0.97 Not available 

To further summarize the key findings, two reference tables are provided below. Table 2 

outlines the various factors influencing SFR, along with the corresponding methods used to 

estimate them, based on the studies reviewed in this section. Table 3 highlights additional 

variables that have been identified in the literature as having a significant impact on SFR, but 

that are not currently accounted for in HCM. Together, these tables provide a concise and 

organized reference to support the detailed discussion presented above, enhancing 

understanding of both established and emerging factors that influence SFR and highlighting 

opportunities for improved capacity estimation practices. 
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Table 2. Summary of factors affecting SFR 

Factors Methodology Location Reference 

Traffic pressure, number of lanes, speed limit 

Linear regression 

analysis 

Sensitivity analysis 

Florida USA [9] 

Turning radius, area population, area type - USA [33] 

Area type ANOVA Florida USA [20] 

Heavy vehicle, side friction, number of lanes Statistical analysis 
South 

Florida USA 
[28] 

Lane type, lane width, grade, heavy vehicles ANOVA 
Pennsylvania 

USA 
[10] 

Size of town 
Weighted linear 

regression 
Indiana USA [24] 

Non-local driver One way ANOVA Florida USA [36] 

Lane width ANOVA USA [30] 

Lane width, approach grade, turning radius,  

vehicle type 

Partial least-square 

method 
China [31] 

Weather ANOVA China [37] 

Speed limit, number of through lane, grade 
Multiple linear 

regression 
South Africa [29] 

Camera enforcement, speed limit, turning radius 
Multiple linear 

regression 
Jordan [32] 

Speed limit, lane marking, city, location  

(CBD/non-CBD) 
ANOVA Kuwait [38] 

Pedestrian crossing Regression models Iran [35] 
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Table 3. Factors affecting SFR considered in HCM and other studies 

Factors HCM Studies 

Number of lanes  [9], [28], [29] 

Lane width  [10], [30] 

Turning radius  [31], [32], [33] 

Approach grade  [29], [34] 

Pedestrian  [35] 

Right-turn movement  [9] 

Heavy vehicle  [9], [28] 

Non-local driver  [36] 

Side friction  [9], [28] 

Weather  [10] 

Speed limit  [9], [29], [38], [39] 

Camera enforcement  [32] 

Traffic pressure  [9], [39], [40] 

Area population  [6], [33], [41] 

Area type  [20], [33] 

SFR Estimation and Regional Discrepancies 

SFR is a fundamental parameter in determining intersection capacity and plays a crucial role 

in optimizing signal timing. Inaccurate estimation of SFR can result in erroneous predictions 

of vehicle delays, subsequently impacting the assessment of the LOS at signalized 

intersections. Researchers have emphasized the importance of estimating SFR based on local 

conditions [5] [6] [43] [44]. Tarko and Tracz [43] highlighted that inaccurate SFR estimations 

can significantly undermine LOS predictions at signalized intersections, advocating for 

regularly updated predictive formulas that incorporate local conditions. Similarly, Khatib and 

Kyte [45] identified errors in input parameters as a major source of bias in LOS predictions, 

recommending the use of site-specific data. Dowling [44] further demonstrated that local 

values for parameters such as the peak hour factor (PHF) and SFR substantially reduce errors 

in delay estimates, particularly when traffic flow exceeds 85% of capacity. 

Several U.S.-based studies have explored region-specific SFRs. Cartagena and Tarko [6] 

examined local base saturation flow rates and lost times at 21 signalized intersections in 

Indiana, revealing significant variations from the standard HCM value of 1,900 pc/h/ln. Their 

study proposed a new equation for Indiana’s SFR, factoring in town size (based on 

population) and the number of lanes, elements not considered in the HCM. They found SFRs 

ranging from 1,352 to 2,178 pc/h/ln, with an average of 1,842 pc/h/ln, and suggested 

adjustment factors based on town population size. Joseph and Chang [8] conducted a similar 
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study in Maryland, where SFRs ranged from 1,885 to 2,200 pc/h/ln, recommending a value 

of 2,080 pc/h/ln for planning purposes. Dunlap’s research in Pennsylvania also demonstrated 

the importance of regional differences, confirming the suitability of a district-wide SFR of 

1,800 pc/h/ln, with localized adjustments for individual counties [10]. His study also 

explored the impact of rain, though the results were inconclusive. 

McMahon et al. [28] investigated SFR in five South Florida counties, finding mean values as 

high as 2,130 pc/h/ln at some intersections, while Bonneson et al. [9] recommended a base 

SFR of 1,950 pc/h/ln for intersections in Florida, accounting for factors such as right turns 

and number of lanes. Their study emphasized the need for adjustment factors based on local 

traffic and geometric conditions. 

Internationally, several studies have further highlighted the variability in SFR due to local 

conditions. Shao et al. [31] in China recommended a base SFR of 1,800 pc/h/ln, accounting 

for lane width and turn radius, which particularly impacted left-turn lanes. In Doha, Qatar, 

Hamad and Abuhamda [46] reported a significantly higher SFR of 2,323 pc/h/ln compared to 

the HCM default. Al-Mistarehi et al. [32] in Jordan estimated a base SFR of 1,720 pc/h/ln, 

while Al-Omari and Musa [38] in Kuwait analyzed 31 signalized intersections and estimated 

an SFR of 2,097 pc/h/ln. In South Africa, Bester and Meyers [29] studied intersections in the 

Stellenbosch area and recommended a base SFR of 2,076 pc/h/ln. In Makkah, Saudi Arabia, 

Alam et al. [47] reported a much higher SFR of 2,500 pc/h/ln under ideal conditions. Rahman 

et al. [48] examined SFR in Yokohama, Japan, and Dhaka, Bangladesh, finding SFRs ranging 

from 1,636 to 2,093 pc/h/ln in Yokohama and 2,006 to 2,091 pc/h/ln in Dhaka, demonstrating 

that the HCM’s default value can overestimate SFR by up to 4.38% in some cases. 

The variations in SFR values across both U.S. and international studies highlight the 

importance of region-specific estimates. Figures 4 and 5 illustrate the comparison between 

the default SFR value provided by the HCM and the values recommended by researchers 

across various states in the U.S. and other countries. These figures visually demonstrate the 

significant discrepancies between the national average and region-specific SFR values. 
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Figure 4. Comparison among recommended SFR values (in U.S.) versus default HCM value 

 

Figure 5. Comparison among recommended SFR values (global) versus default HCM value 

 

Stop-Controlled Intersections 

Critical headway (CH) and follow-up headway (FH) are two fundamental parameters in 

evaluating the operational performance and capacity of stop-controlled intersections. Various 

researchers have defined critical headway differently. Troutbeck [49] defined it as the 
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minimum time interval in the major-street traffic stream that enables a vehicle from the 

minor street to enter the intersection. In contrast, Raff’s definition [50] characterizes the 

critical gap as the point where the number of accepted gaps shorter than it equals the number 

of rejected gaps longer than it. Other researchers define it as the gap corresponding to a 50% 

probability of acceptance or rejection by drivers [51] [52] [53] [54] [55]. 

Follow-up headway, as defined in the HCM [11], refers to the time between the departure of 

one vehicle from the minor street and the departure of the next vehicle using the same major-

street headway, under continuous queuing conditions on the minor street. Both parameters 

are essential inputs in gap acceptance models, which are widely used to estimate the capacity 

of stop-controlled intersections. As such, the accuracy of critical and follow-up headway 

estimates directly influences the reliability of capacity assessments [56]. 

However, accurately measuring critical headway is challenging, as it is not directly 

observable and can vary significantly among drivers based on individual behavior, vehicle 

type, and situational factors [57]. The HCM provides default values for these parameters, 

with critical headway ranging from 4.1 to 7.3 sec. and follow-up headway from 2.2 to 4 sec., 

depending on the roadway configuration and movement type. Nonetheless, the HCM notes 

that these values represent national averages and may not adequately reflect local conditions. 

Therefore, estimating location-specific critical and follow-up headways through gap 

acceptance analysis is essential for accurate capacity evaluation at stop-controlled 

intersections. 

Methodologies for Critical Headway Estimation 

Researchers have developed various methods to estimate critical and follow-up headways at 

stop-controlled intersections, each with its own assumptions, data requirements, and 

application contexts. These methods aim to capture the decision-making behavior of drivers 

as they accept or reject gaps in the major-street traffic stream. The fundamental concepts of 

several widely used methods are discussed below. 

Greenshields’s method. Greenshields [58] introduced a method for estimating critical 

headway grounded in traffic flow principles and gap acceptance theory. This approach 

utilizes a histogram to display the distribution of accepted and rejected gaps by minor road 

drivers across various gap size intervals. In the histogram, the vertical axis represents the 

number of gaps, accepted as positive values and rejected as negative values, while the 

horizontal axis denotes the gap size in seconds. The critical gap is estimated as the mean of 

the gap interval where the number of accepted and rejected gaps is equal; see Figure 6. While 
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this method provides a simple and intuitive graphical interpretation of gap acceptance 

behavior, later studies [59] [60] have noted that small sample sizes can compromise the 

accuracy of the estimates and potentially distort the resulting critical headway values. 

Figure 6. Critical headway estimation by Greenshields’s method 

 

Raff method. The Raff method [50] is one of the earliest and most widely used techniques 

for estimating critical headway, favored for its simplicity and ease of implementation. In its 

original formulation by Raff and Hart, the method focuses exclusively on lag data, defined as 

the time interval between the arrival of a major street vehicle and the arrival of a minor street 

vehicle at the intersection. The critical lag (L) is defined as the lag value at which the number 

of accepted lags shorter than L equals the number of rejected lags longer than L. 

Despite its widespread use, the Raff method has been critiqued for statistical inefficiency, as 

it excludes gap acceptance and rejection data, potentially leading to biased results [61] [62]. 

To address this limitation, Fitzpatrick [12] proposed an enhancement by incorporating both 

gap and lag data, arguing that there is no meaningful statistical distinction between the two. 

Further, Miller [61] demonstrated that the Raff method can introduce systematic bias, 

particularly under varying flow conditions in the major traffic stream. 

To estimate the critical gap using the Raff method, the critical gap is determined by 

employing the empirical distribution functions of accepted gaps, 𝐹𝑎(𝑡), and rejected gaps, 

𝐹𝑟(𝑡); see Equation 3. 
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𝐹𝑎(𝑡) = 1 − 𝐹𝑟(𝑡) (3) 

Maximum likelihood method. Troutbeck developed a method for estimating critical gap 

using the MLM, a statistically robust approach grounded in probability theory [49]. This 

method operates on the principle that a driver’s critical gap lies between the largest rejected 

gap and the accepted gap that immediately follows. By analyzing these observed gap 

sequences, the method calculates the likelihood that the true critical gap for a driver falls 

within this range. 

To implement the model, a cumulative distribution function (CDF) representing the 

distribution of critical gaps across the driver population must be specified. Commonly used 

distributions include the log-normal and Pearson distributions. A key assumption in this 

approach is that all drivers exhibit consistent behavior, meaning each driver is assumed to 

have a constant critical gap value during the observation period [63]. 

This method is widely regarded as highly reliable due to its statistical rigor and ability to 

utilize both accepted and rejected gap data [63]. It has been adopted by major transportation 

agencies for estimating gap acceptance parameters and informing design and operational 

guidelines at unsignalized intersections [64] [65]. 

Logit method. The logit method is a weighted linear regression model commonly used to 

estimate the critical gap, particularly when the error variance is either fully known or known 

up to a proportional constant [59]. This method models the probability of gap acceptance as a 

function of the gap size and applies the logistic regression framework to estimate the 

parameters of interest. 

𝑃 =  
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

(4) 

where,  

𝑃 = probability of accepting a gap;  

𝛽0, 𝛽1 = regression coefficients; and  

𝑥 = variable related to gap acceptance decision. 

The logit function can be transferred into a linear equation. 

𝑃′ = ln (
𝑃

1 − 𝑃
) =  𝛽0 + 𝛽1𝑥 

(5) 
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where,  

𝑃′ = transformed probability. 

The critical is 𝑥- value obtained by substituting 𝑃 with 0.5. 

Siegloch’s method. Seigloch's method estimates the critical gap by utilizing the size of the 

major stream gap and the number of minor street vehicles accepting each major street gap 

during periods of continuous queuing. The mean values are plotted, with gap size in seconds 

on the horizontal axis and the number of gap acceptances on the vertical axis. A regression 

line is fitted to these points, which is then used to calculate the critical gap and follow-up 

time. For this method to be applicable, the minor road should be saturated with queued traffic 

[59]. 

Probability equilibrium method. The probability equilibrium method, introduced by Ning 

Wu [66], is based on the probability equilibrium between the accepted and rejected gaps. 

Unlike other methods, it does not require a predefined distribution function for critical gaps 

or assumptions regarding driver homogeneity and consistency. Additionally, this approach 

yields a true average of critical headway. Further, it produces an empirical distribution of 

critical gaps, which is particularly useful for microscopic traffic simulations [66]. 

Ashworth’s method. This method assumes that major stream gaps follow an exponential 

distribution with statistical independence between consecutive gaps, while the accepted gaps 

and the average critical gap follow normal distributions. The average critical gap can be 

estimated using the mean and standard deviation of the accepted gaps, as expressed by the 

following equation: 

𝑡𝑐 = 𝜇𝑎 − 𝑃. 𝜎𝑎
2 (6) 

where,  

𝑡𝑐 = average critical gap;  

𝜇𝑎 = mean of accepted gaps (in seconds);  

𝜎𝑎 = standard deviation of accepted gaps; and  

𝑃 = major stream traffic volume. 

Methodologies for Follow-up Headway Estimation 

Direct measurement method. Follow-up headway can be directly measured by analyzing 

time intervals between successive vehicles during periods of continuous queuing at a stop-

controlled intersection [57]. This method involves observing and recording the departure 
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times of vehicles as they pass a designated observation point, either through video footage or 

manual timing. The follow-up headway is then calculated as the time difference between the 

departure of one vehicle and the departure of the next vehicle utilizing the same accepted gap 

in the major traffic stream. This approach provides a straightforward and reliable means of 

estimating follow-up headway, particularly under stable queue discharge conditions. 

HCM method. The HCM provides a base follow-up headway value for stop-controlled 

intersections, which serves as the foundation for calculating the follow-up headway for 

specific minor street movements. This base value is then adjusted to account for factors such 

as the presence of heavy vehicles and the geometric characteristics of the major street. 

𝑡𝑓,𝑥 = 𝑡𝑓,𝑏𝑎𝑠𝑒 + 𝑡𝑓,𝐻𝑉𝑃𝐻𝑉 (7) 

where,  

𝑡𝑓,𝑥 = follow-up headway for movement 𝑥 (𝑠); 

 𝑡𝑓,𝑏𝑎𝑠𝑒 = base follow-up headway;  

𝑡𝑓,𝐻𝑉 = adjustment factor for heavy vehicles (0.9 for major streets with one lane in 

each direction; 1.0 for major streets with two or three lanes in each direction); and 

𝑃𝐻𝑉 = proportion of heavy vehicles for movement (expressed as a decimal). 

Comparison of Gap Acceptance Methods in Estimating Critical Gaps at Stop-

Controlled Intersections 

Kay Fitzpatrick [12] conducted a study in Pennsylvania to determine gap acceptance values 

for truck and passenger car drivers at stop-controlled intersections. The study employed three 

methods: Greenshields’s method, Raff’s method, and the Logit method. Among these, the 

researcher favored the Logit model over the others. Greenshields’s method, which evaluates 

the gap accepted at isolated times without considering the number of gaps accepted or 

rejected at other time intervals, was found to yield questionable results, particularly when 

applied to limited data. Similarly, Raff’s method, which accounts for cumulative 

distributions, was deemed less reliable due to its sensitivity to larger gaps. In contrast, the 

Logit method, which estimates the probability of accepting gaps of different sizes, provided a 

more accurate estimation of critical gap values. 

Kyte et al. [57] expanded on gap-acceptance studies in the United States by estimating 

critical headway and follow-up headway using the Siegloch method and maximum likelihood 

estimation. The findings indicated that the maximum likelihood method provided more stable 

and consistent estimates of critical headway compared to the Siegloch method. When 
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comparing the estimated critical headway values with the default values provided in the 

HCM, it was observed that, for lower-speed sites, the HCM critical headway values were 

consistent with those estimated by the Siegloch method. However, the maximum likelihood 

method produced values that were equal to or lower than the HCM values. For higher-speed 

sites, the HCM values were approximately 2 sec. higher than those estimated by both 

methods. Additionally, follow-up headway was measured using both the Siegloch method 

and direct field observation, with findings showing some consistency between these two 

approaches. When compared to the HCM's default follow-up headway values, the study 

found consistency among the HCM values, Siegloch estimates, and direct measurements. 

Further comparative analysis by Troutbeck [67] examined the maximum likelihood method 

and the probability equilibrium method (PEM) for estimating critical gaps at unsignalized 

intersections, considering varying traffic conditions and driver behaviors. The study found 

that the maximum likelihood method consistently produced accurate and unbiased estimates 

of both the mean and standard deviation of critical gaps, even in cases where driver behavior 

was inconsistent. In contrast, the probability equilibrium method demonstrated a notable bias, 

particularly influenced by the flow in the priority stream, and tended to underestimate the 

variance of critical gaps. 

In a separate study, Troutbeck [68] examined the estimation of critical gaps for both vehicle 

and pedestrian movements at unsignalized intersections, comparing the Raff method, the 

revised Raff method, and the maximum likelihood method. The study concluded that the 

maximum likelihood method was the preferred technique due to its superior performance in 

estimating the mean critical gaps. However, the modified Raff method, which incorporates 

the maximum rejected gap, was identified as an acceptable alternative when the maximum 

likelihood method is not feasible. 

In their study, Brinol et al. [63] reviewed several methods for estimating critical gaps at 

unsignalized intersections, assessing their effectiveness based on criteria such as consistency, 

robustness, and compatibility with capacity models. The study found that the maximum 

likelihood method and Hewitt's method provided the most reliable and consistent estimates 

of critical gaps, even under varying traffic conditions. These methods were independent of 

the traffic volume on the major street, making them particularly suitable for practical 

applications. In contrast, Ashworth’s and Raff’s methods exhibited significant bias and 

sensitivity to traffic volumes, reducing their reliability. Siegloch’s method performed well in 

saturated traffic conditions but showed limitations when applied to more realistic, non-

Poisson traffic scenarios.  
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A.J. Miller’s [61] comparative study of nine gap-acceptance methods focused on efficiency 

and bias, as well as offering recommendations for practical use. The study found that five of 

the methods exhibited significant bias and should not be recommended without the 

application of bias corrections. The Ashworth method demonstrated moderate efficiency but 

was only recommended in situations where the gaps offered were not highly correlated. In 

contrast, the maximum likelihood method consistently produced satisfactory results across 

various datasets and emerged as a strong candidate for practical applications in estimating 

critical gaps. 

McGowen and Stanly [69] proposed a new gap-acceptance model requiring only accepted or 

rejected gaps and produced unbiased estimates. The study concluded that, while the 

Troutbeck method is widely accepted, it can result in biased outcomes and is less effective 

when applied to datasets containing only rejected gaps. In contrast, the proposed alternative 

method is preferred for its flexibility and ability to yield unbiased results, particularly in 

cases where only rejected gap data are available. However, the accuracy of this method is 

contingent on the correct estimation of traffic flow on the major street. 

Pawar and Patil [70] analyzed spatial critical gaps at high- and medium-speed two-way stop-

controlled (TWSC) intersections using both parametric (Binary Logit Model, BLM) and non-

parametric (Support Vector Machines, SVM) techniques. The study found that both BLM and 

SVM provided reliable estimates for spatial critical gaps. However, SVM demonstrated 

significant potential as an alternative to BLM, producing similar estimates with slight 

variations, especially at high-speed intersections, highlighting its viability for such 

applications. 

Mohan and Chandra [71] proposed a novel approach, the Occupancy Time Method (OTM), 

for estimating critical gaps at two-way stop-controlled intersections under heterogeneous 

traffic conditions, using occupancy time data. They compared this method with several 

established techniques, including the MLM, Modified Raff Method, Harders’s Method, Logit 

Method, Probability Equilibrium Method (PEM), and Lag Method. Their findings indicated 

that traditional methods like MLM and the Modified Raff Method were inadequate for 

addressing the complexities of heterogeneous traffic in India, often resulting in unrealistically 

low critical gap estimates. In contrast, the OTM method outperformed both MLM and the 

Modified Raff Method by better capturing the intricate driver behavior and vehicle 

movements typical of such intersections. OTM was preferred for its closer alignment with 

actual field conditions, while MLM tended to overestimate capacity and the Modified Raff 

Method underestimated it. 
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In summary, several researchers have compared multiple gap-acceptance methods across 

different contexts, favoring certain techniques for their reliability and accuracy. Table 4 

provides a concise comparison of the methods analyzed in the studies and the preferred 

methods identified by the researchers. 

Table 4. Summary of methods compared and preferred methods in previous gap-acceptance studies 

Researcher(s) Methods Compared Preferred Method Reason for Preference 

Kay Fitzpatrick  

[12] 
Greenshield, Raff, Logit Logit 

More accurate estimation of 

critical gap values 

Kyte et al.  

[57] 

Siegloch, Maximum 

Likelihood 

Maximum 

Likelihood 

More stable estimates of 

critical headway 

Troutbeck  

[67] 

Maximum Likelihood, 

Probability Equilibrium 

(PEM) 

Maximum 

Likelihood 

Accurate and unbiased 

estimates under all conditions 

Troutbeck  

[68] 

Raff, Modified Raff, 

Maximum Likelihood 

Maximum 

Likelihood 

Superior performance in 

estimating mean critical gaps 

Brinol et al.  

[63] 

Maximum Likelihood, 

Hewitt, Ashworth, Raff, 

Siegloch 

Maximum 

Likelihood, Hewitt 

Consistency, independence 

from major street traffic 

volume 

A.J. Miller  

[61] 

Nine methods, including 

Ashworth and Maximum 

Likelihood 

Maximum 

Likelihood 

Consistently reliable across 

datasets 

McGowen & 

Stanly [69] 
Troutbeck, New Model New Model 

Flexibility and unbiased 

results with rejected gaps 

Pawar & Patil  

[70] 

Binary Logit, Support 

Vector Machines (SVM) 

Support Vector 

Machines (SVM) 

More reliable at high-speed 

intersections 

Mohan & Chandra  

[71] 

Maximum Likelihood, 

Modified Raff, 

Occupancy Time 

Occupancy Time 

Method (OTM) 

Better performance under 

heterogeneous traffic 

conditions 

Factors Affecting Critical Headway and Follow-up Headway 

At stop-controlled intersections, drivers on the minor approach are required to stop and 

evaluate gaps in the major street traffic stream before proceeding. This gap acceptance 

process is dynamic and influenced by a complex interaction of driver behavior, roadway 

characteristics, and environmental conditions. Previous studies have identified key factors, 

such as intersection geometry, driver characteristics, and vehicle type, that significantly 

influence both critical headway and follow-up headway. This section reviews findings from 
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the literature to better understand how these factors impact driver decision-making and 

capacity estimation at unsignalized intersections. 

As major street traffic volume increases, minor street drivers experience greater difficulty in 

identifying acceptable gaps, often resulting in shorter accepted gaps. Kyte et al. [72] reported 

a notable decline in accepted gap size once the major street volume exceeds 90 vehicles per 

hr. Similarly, minor street traffic volume contributes to shorter critical headways due to 

longer queues and increased pressure to proceed. Tupper et al. [73] found that the presence of 

a queue reduced estimated critical headways by approximately 1.5 sec., attributing this to 

social pressure from trailing vehicles. Additionally, drivers who reject multiple gaps before 

accepting one tend to eventually accept gaps that are 2–3 sec. shorter [73]. This behavior is 

further influenced by prolonged waiting times, which can lead drivers to prioritize reduced 

delay over safety [72]. 

The presence of passengers also impacts gap acceptance, especially among young drivers, 

who may accept gaps 1 to 1.5 sec. shorter due to peer pressure or distraction [73]. Driver age 

and sex have also been shown to affect gap acceptance behavior. Studies indicate that male 

drivers accept gaps 0.5 to 1.5 sec. shorter than female drivers, while younger drivers accept 

significantly shorter critical gaps, by as much as 1 sec., compared to adults [73]. The 

difference between adult and elderly drivers is less pronounced [73], although older drivers 

generally accept longer gaps than both teenagers and adults [52]. 

Temporal factors, such as time of day and lighting conditions, also influence gap acceptance. 

Drivers are more likely to accept shorter gaps during daytime than at night [52]. Additionally, 

more aggressive behavior is observed during morning and evening peak periods compared to 

midday, likely due to higher traffic volumes and commuting time constraints [73]. 

Intersection geometry, vehicle type, and maneuver type further affect critical headways. Left-

turning vehicles typically require larger gaps than through vehicles, which in turn need larger 

gaps than right-turning vehicles [72]. Tian et al. found that smaller turn angles facilitate 

easier maneuvers, resulting in critical gaps that are approximately 1 sec. shorter than those 

for larger angles [74]. Increases in the number of lanes on the major street and the number of 

legs at the intersection contribute to greater maneuver complexity and therefore larger critical 

gaps. Additionally, critical headways increase with approach grade [74]. 

Vehicle type is another influential factor. Heavy vehicles require larger critical gaps and 

longer follow-up times due to slower acceleration. Tian et al. reported that heavy vehicles 

need critical gaps approximately 1 sec. longer than passenger cars, with follow-up headways 
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also increased by a similar margin [74]. Mohan et al. found that two-wheelers had the 

smallest critical gaps, while trucks required the largest [71]. The proportion of large vehicles 

in the major stream also affects gap acceptance, as drivers are generally more hesitant to 

accept gaps involving larger conflicting vehicles, whereas smaller or mid-sized vehicles have 

less influence on the decision. 

While the HCM incorporates some of these factors into its procedures for estimating critical 

and follow-up headways, not all of the variables discussed above are explicitly considered. 

Table 5 summarizes key variables identified in the literature that significantly impact 

headway values but are not currently included in the HCM framework. 

Table 5. Consideration of critical and follow-up headway influencing factors 

Factors HCM Studies 

Traffic Flow on Major Street  [72] 

Traffic Volume on Minor Road  [73] 

Presence of Queues  [72], [73] 

Passenger Presence  [73] 

Driver Age and Sex  [52], [73] 

Time of Day  [52], [73] 

Maneuver Direction  [57], [72] 

Turn Angle  [74] 

Vehicle Type  [71], [74] 

Number of Lanes and Legs  [74] 

Approach Grade  [74] 
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Objective 

The primary objectives of this research project were to: 

 Estimate the saturation flow rate (SFR) for selected signalized intersections, and 

 Analyze critical headway (CH) and follow-up headway (FH) on stop-controlled 

intersections. 
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Scope 

The statewide data collected for this research utilized intersection traffic flow data from 

available sources, including 511 video data provided by the state and intersections selected 

by District Engineers. The final data analysis was compiled by combining these sources, 

focusing on intersections with sufficient sample sizes for analysis. This process resulted in 51 

signalized four-leg intersections and 26 four-leg two-way stop-controlled intersections across 

a total of eight districts in Louisiana.  
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Methodology 

This section outlines the methodology used to estimate the HCM parameters for Louisiana. A 

generalized multi-step process was conducted to achieve this objective; see Figure 7. 

Initially, suitable methods for estimating intersection capacity parameters were selected, 

considering Louisiana’s traffic conditions. Next, a list of signalized and stop-controlled 

intersections was prepared based on predefined criteria, which was subsequently used for 

data collection and database preparation for analysis. Using this database, the intersection 

capacity parameters (SFR, CH, and FH) were estimated, and the factors influencing these 

parameters were identified. Each of these steps is discussed in detail in the following 

sections. 

Figure 7. Multi-step process of HCM parameter estimation 

 

Intersection Selection 

The process of identifying suitable intersections began with the statewide travel information 

website (511la.org) to evaluate camera accessibility. The 511 system includes 296 CCTV 

cameras covering major signalized intersections across Louisiana’s highways, primarily on 

higher functional classification roadways. However, the system does not cover stop-

controlled intersections, and some camera views were unusable due to poor angles or adverse 

weather conditions. Therefore, intersections covered by the 511 system that met the selection 

criteria and had usable footage were included in the study. 
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Additionally, a limited number of state-controlled intersections with cameras operated by the 

Louisiana Department of Transportation and Development (DOTD) were identified. These 

included 23 signalized intersections and 2 two-way stop-controlled intersections, which were 

evaluated using the same criteria. 

To expand the sample, representatives from Louisiana DOTD in various districts were 

contacted to obtain a list of strategically important intersections not covered by the 511 

system. Further, the annual crash database developed and maintained by Louisiana DOTD 

was used to identify additional intersections. The highway section table from this Microsoft 

Access database was filtered to select TWSC intersections with higher AADT on minor 

roads. Intersections from this combined list that met the predefined criteria were included in 

the study. 

A representative sample of intersections for analysis was developed by establishing specific 

selection criteria for both signalized and stop-controlled intersections. The primary objective 

of the selection process was to ensure that the chosen intersections reflected a diverse range 

of functional classifications, lane configurations, and area types. Priority was given to 

intersections with accessible camera coverage to facilitate accurate data collection. Figure 8 

shows all the sources used in intersection selection process. For consistency, the initial key 

selection criteria are outlined below: 

Signalized intersection selection criteria:   

• Sufficient traffic flow with a minimum of seven vehicles during the red phase to allow for 

SFR estimation, preferably at intersections with higher annual average daily traffic 

(AADT). 

• At least one clearly visible lane dedicated to through traffic, with separate analyses for 

intersections with and without turning lanes. 

• Only four-legged intersections were considered. 

• Avoidance of intersections with high truck percentages or significant lane utilization 

issues (e.g., bus stops, parallel parking, railroad tracks). 

Stop-controlled intersection selection criteria:  

• Only four-legged two-way stop-controlled (TWSC) intersections were considered. 

• Prioritize intersections with higher AADT on the minor road to ensure sufficient sample 

size. 
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• Avoidance of intersections with high truck percentages or significant lane utilization 

issues (e.g., bus stops, parallel parking, railroad tracks). 

Figure 8. Sources of intersection selection approach 

 

Supplementary tools, such as Google Earth Street View and Louisiana DOTD’s pavement 

management data repository, iVision, were used to gather geometric information and 

categorize intersection geometry features. After applying the criteria and reviewing the 

available data, a total of 75 intersections were selected for the study, including 49 signalized 

intersections and 26 stop-controlled intersections. Figures 9 and 10 illustrate the distribution 

of the signalized and stop-controlled intersections considered for this study. Data were not 

available for District 58, and no intersection in 511 existed at the time of data collection.  
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Figure 9. Distribution of signalized intersections across districts of Louisiana 
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Figure 10. Distribution of stop-controlled intersections across districts of Louisiana 

 

Selected Methods to Estimate Parameters 

Based on a review of existing literature, and considering the advantages and limitations of 

each method as well as Louisiana’s traffic conditions, the most suitable methods were 

selected for this study. For estimating the SFR at signalized intersections, the Saturation 

Headway/Field Estimation method was selected. The Maximum Likelihood Estimation 

(MLE) method was chosen for estimating CH at stop-controlled intersections, while the 

Direct Measurement method was selected for estimating FH at stop-controlled intersections. 

These methodologies are described below. 

Saturation Headway Method of Estimating SFR at Signalized Intersections 

The Saturation Headway/Field Measurement method of estimating SFR, as described in the 

HCM, calculates the SFR by taking the reciprocal of the saturation headway.  
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This method was selected for this study because it allows for detailed, accurate, and site-

specific estimation of SFR. Saturation headway refers to the average time gap between 

vehicles that occurs after the fourth vehicle in the queue, continuing until the last vehicle in 

the initial queue clears the signalized intersection; see Figure 11 [11]. This method involves 

directly measuring traffic flow during the green phase at a specific intersection. To ensure an 

accurate estimation of SFR, which reflects the true capacity of the intersection while 

excluding the effects of initial startup delays and ensuring stabilized traffic flow, time 

recording began when the rear axle of the fourth vehicle in the queue (which was stationary 

while waiting for the green signal) crossed the stop line. The recording ended when the rear 

axle of the seventh, eighth, ninth, or tenth vehicle (depending on which was the last vehicle 

in the stopped queue when the green signal was given) crossed the stop line. 

Figure 11. Saturation headways at signalized intersections [11] 

 

During this study, in cases where the stop line was not visible, a consistent alternative 

reference line was established just beyond the typical stopping position of the first queued 

vehicles. Additionally, the developed worksheet (Figure 12) recorded data on the number of 

heavy vehicles, left- and right- turning vehicles, and weather and pavement conditions during 

the data collection period, ensuring comprehensive documentation of factors influencing the 

SFR.  
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Figure 12. SFR estimation worksheet 

 

The saturation headway was calculated using the following equation: 

ℎ𝑠 =  
𝑡

𝑛
 

(8) 

where,  

ℎ𝑠 = saturation headway (sec.);  

t = elapsed time (sec.); and  

n = total number of vehicles passing. 

The saturation flow rate was then calculated by dividing 3,600 by saturation headway, as 

presented in Equation 2. 

To minimize human error, SFR was calculated three times for each signal cycle, and the 

average of these calculations was taken. For each intersection, at least 15 and up to 20 signal 

cycles were measured, and the average of these cycles was used as the estimated SFR for that 

specific intersection. 
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After computing the prevailing SFR at each study intersection, the adjusted saturation flow 

rate (𝑆𝐹𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) was estimated by applying the adjustment factors outlined in the HCM. 

This involved adjusting the base saturation flow rate of 1,900 (pc/h/ln) to account for lane 

width, heavy vehicle presence, approach grade, and turning movements. Other adjustment 

factors, such as those related to work zones, pedestrian or bicycle activity, and bus stops, 

were assigned a value of 1.0, as the study intersections were unaffected by these elements. 

Specifically, there were no work zones, no pedestrian or bicycle crossings, and no bus stop 

activities during the data collection period. 

For study approaches with only through movements, the adjusted saturation flow rate was 

calculated using the following equation: 

𝑆𝐹𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑡ℎ   = 𝑆𝑜 ∗ 𝑓𝑤 ∗ 𝑓𝐻𝑉𝑔 (9) 

where,  

𝑆𝐹𝑅𝑜 = base SFR (1,900 pc/h/ln);  

𝑓𝑤 = adjustment factor for lane width; and 

𝑓𝐻𝑉𝑔 = adjustment factor for heavy vehicle and approach grade. 

For intersections where the study approach included turning movements on shared lanes, the 

initially adjusted through-lane saturation flow rate (𝑆𝐹𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑡ℎ) was further adjusted 

based on the type of turning movement observed.  

For approaches where right-turning movements occurred on shared lanes, the adjusted SFR 

was calculated using the permitted right-turn adjustment formula: 

𝑆𝐹𝑅𝑠𝑟 =
𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑡ℎ

1 + 𝑃𝑅(
𝐸𝑅

𝑓𝑅𝑝𝑏
− 1)

 
(10) 

where,  

𝑆𝐹𝑅𝑠𝑟= saturation flow rate in shared right-turn and through lane with permitted 

operation (pc/h/ln);  

𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑡ℎ = saturation flow rate of an exclusive through lane;  

𝑃𝑅 = proportion of right-turning vehicles in the shared lane (decimal);  

𝐸𝑅 = equivalent number of through cars for the protected right-turning vehicle = 

1.18; and  

𝑓𝑅𝑝𝑏 = pedestrian-bicycle adjustment factor for right-turn group (=1 in this study). 
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For left-turning movements on shared lanes, the adjusted SFR was calculated using the 

following equation. Given that the pedestrian/bicycle adjustment factor is 𝑓𝐿𝑝𝑏 =1 for all 

study intersections, the equation simplifies as: 

𝑆𝐹𝑅𝑠𝑙 =
𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑡ℎ

1 + 𝑃𝐿(𝐸𝑅 − 1)
 

(11) 

 

Finally, the local base SFR for each intersection was computed using the ratio of the 

prevailing SFR to the adjusted SFR, scaled by the base SFR value: 

𝑆𝐹𝑅𝑏𝑎𝑠𝑒 = 1900 ∗
𝑆𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔

𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
 

(12) 

MLE Method of Critical Headway at Stop-Controlled Intersections 

CH and FH for stop-controlled intersections were estimated using gap acceptance analysis. 

According to previous studies, the MLE method provides accurate, unbiased, and stable 

results, even with small sample sizes [57] [61] [75] [76] [77]. Given the low traffic volumes 

at most stop-controlled intersections in Louisiana and the demonstrated robustness of the 

MLE method, it was selected for CH estimation in this study. 

The MLE method assumes that a driver's critical gap is greater than the largest gap they 

rejected and smaller than their accepted gap. Troutbeck (1992) modeled the probabilistic 

distribution of critical gaps using a log-normal distribution, which is characterized by right 

skewness and non-negative values, aligning with expected conditions at stop-controlled 

intersections [49]. The following assumptions are made: 

• 𝑟𝑖 = the logarithm of the largest gap rejected by the ith driver. 𝑟𝑖 = 0 if no gap was 

rejected; 

• 𝑎𝑖 = the logarithm of the gap accepted by the 𝑖th driver; 

• µ = mean of the distribution of the logarithms of the individual drivers’ critical gaps; 

• 𝜎2 = variance of the distribution of the logarithms of the individual drivers’ critical gaps; 

• 𝑓(𝑥) = probability density function for the normal distribution; and 

• 𝐹(𝑥) = cumulative distribution function for the normal distribution. 
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The maximum likelihood of a sample of 𝑛 drivers having an accepted gap and a largest 

rejected gap of (𝑎𝑖, 𝑟𝑖) is expressed as: 

∏[𝐹(

𝑛

𝑖=1

𝑎𝑖) − 𝐹(𝑟𝑖)] 
(13) 

Taking the logarithm of the likelihood function gives: 

𝐿 =  ∑ 𝑙𝑛 [ 

𝑛

𝑖=1

𝐹(𝑎𝑖) − 𝐹(𝑟𝑖)] 
(14) 

Maximizing this likelihood yields estimates for µ and 𝜎2, which are then used to calculate 

the mean critical 𝑡𝑐 and its variance 𝑠2 using the following equations: 

𝑡𝑐 =  𝑒𝜇+0.5 𝜎2
 (15) 

𝑠2 =  𝑡𝑐
2(𝑒𝜎2

− 1) (16) 

Required data size for MLE method. The iterative nature of the MLE method suggests that 

a large dataset may be necessary to produce accurate results. In Troutbeck’s study [67], the 

difference between the mean of 100 critical gap estimates and the true critical gap was 

analyzed under varying major street traffic volumes of 300, 900, and 1,500 vehicles per hour. 

The results, presented in Figure 13, illustrate the relationship between the number of 

observed drivers, ranging from 10 to 100, and the accuracy of the estimated mean critical 

gap. 



—  51  — 

 

Figure 13. Required data size for MLE method [67] 

 

For low traffic volumes and fewer than 20 observed drivers, the estimated mean critical gap 

deviates significantly from the true value. However, when the number of observed drivers 

exceeds 25, the estimated mean critical gap closely aligns with the true value, regardless of 

the major street volume. This demonstrates that the MLE method provides an unbiased 

estimate when sufficient data is available. Based on these findings, a minimum of 25 to 30 

observed drivers is recommended for reliable critical gap estimation using the MLE method 

[67]. 

Further, potential biases can arise from minor road drivers who accept gaps in the major 

street flow without rejecting any. Excluding these cases from the dataset could introduce bias 

into the results. To mitigate this issue, the recommended approach is to assign a maximum 

rejected gap of zero or a small value when no gaps are explicitly rejected, ensuring the data 

remains representative and unbiased. 

Definition of gap events. Gap events are time intervals that define the beginning and end of 

gaps in the major street traffic. To apply the MLE method, it is essential to identify both the 

maximum rejected gap and the accepted gap for the subject minor road vehicle, i.e., the 

vehicle attempting to merge into the major street traffic. These gap events are determined 

using the passage times of vehicles in the major street, where a gap is the time interval 

between the begin gap and end gap events. 
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A begin gap event is triggered by the passage of a major street vehicle that directly conflicts 

with the subject vehicle, while an end gap event occurs with the passage of a higher-priority 

major street vehicle that also conflicts with the subject vehicle. Accurate identification of 

these conflict points is critical for defining gap events correctly. For example, in the case of a 

left-turning vehicle on the major street, only through and right-turning vehicles on the 

opposing major street are considered end gap events. Conversely, for movements originating 

from the minor street, all major street vehicles are treated as end gap events. Generally, 

vehicles on the opposing minor street do not exhibit clear priority over the subject vehicle, 

regardless of their movements. 

If the major street comprises multiple lanes, only vehicles in lanes that physically conflict 

with the movement of the subject vehicle from the minor street are considered in the 

calculation of gap events. Figure 14 illustrates an example of gap events at a multi-lane 

intersection, where a left-turning minor street vehicle conflicts with right-bound vehicles in 

lanes 1 and 2, as well as a left-bound vehicle in lane 1. Consequently, vehicles in these three 

lanes are included when defining the gap events. This approach ensures a precise 

understanding of the temporal and spatial dynamics influencing gap acceptance behavior. 

Figure 14. Gap events at multi-lane stop-controlled intersections 

 

Spreadsheet procedure of the MLE method. The iterative procedure of the MLE method, 

while seemingly complex, can be effectively implemented using spreadsheet commands. The 

process begins with initial estimates or guesses for the mean and variance of the critical gap. 

These initial values are then refined iteratively. Subsequently, the mean (𝜇) and variance of 

the log of the critical gap (𝜎2) are calculated using the following equations and recorded in 

Cells D45 and D46 of Table 6. 
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𝜎2 = ln (
𝑠2

𝑚2
+ 1) 

(17) 

𝜇 = ln(𝑚) − 0.5𝜎2𝑠2 =  𝑡𝑐
2(𝑒𝜎2

− 1) (18) 

where,  

m is the mean; and  

s is the standard deviation of the critical gap. 

Assuming a lognormal distribution of critical gaps, the values in Column D of Table 6 were 

calculated using the following Excel statement: 

= 𝐿𝑁(𝑁𝑂𝑅𝑀. 𝐷𝐼𝑆𝑇(𝐿𝑁(𝐵2), 𝐷$45, 𝐷$46, 𝑇𝑅𝑈𝐸) −

𝑁𝑂𝑅𝑀. 𝐷𝐼𝑆𝑇(𝐿𝑁(𝐶2), 𝐷$45, 𝐷$46, 𝑇𝑅𝑈𝐸))  

Cell D42 contains the formula SUM(D2:D41), which computes the sum of likelihood values 

for the dataset. Initially, the sum in Cell D42 is −10.42, based on the first estimated or 

guessed values of the mean (7.0 sec.) and standard deviation (3.0 sec.) for the critical gap. 

The Solver tool in Excel, which performs iterative optimization, was used to maximize the 

logarithm of the likelihood recorded in Cell D42. Through this iterative procedure, the values 

of the mean and standard deviation converged to 5.399 sec. and 0.8163 sec., respectively. As 

a result, the sum (logarithm of the likelihood) increased to −4.82. These optimized values for 

the mean and standard deviation of the critical gap/headway represent the results of the MLE 

method. 
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Table 6. Spreadsheet procedure of MLE method 

 A B C D 

1 Driver Accepted gap, a Maximum rejected gap, r Ln[F(a) − F(r)] 

2 1 10.89 5.39 -0.7502 

3 2 10.52 0.1 0.0000 

4 3 38.15 2.04 0.0000 

5 4 27.58 2.83 0.0000 

6 5 7.67 0.1 -0.0079 

7 6 8.6 2 -0.0008 

… … … … … 

41 40 22.39 4.59 -0.1711 

42 Sum   -4.8239 

43 Mean critical gap  5.4 

44 Standard deviation of critical gap  0.816 

45 Mean of log of critical gap  1.6748 

46 Standard deviation of log of critical gap 0.1504 

Direct Measurement Method of Estimating FH 

The field measurement method was used to estimate the follow-up headway (FH) at stop-

controlled intersections. A worksheet was developed to directly estimate FH using video 

recordings. From the video footage, it was determined whether the following vehicle was 

queued and whether both the lead and following vehicles utilized the same gap in the 

conflicting traffic stream. FH was measured as the time difference between the exit-queue 

times of the lead and following vehicles, using the stop line as a reference point. If the stop 

line was not visible, a consistent alternative reference line was established to maintain 

accuracy. 

The follow-up times were categorized based on the type of turning movements. Table 7 

presents the worksheet used in this analysis, where each row represents vehicles on the minor 

street that accepted the same gap in the major street. For example, in the initial row of Table 

7, the lead vehicle is a car, and the following vehicle is a pickup truck. The follow-up time 

for the pickup truck is calculated as the difference in exit-queue time between the car and the 

pickup truck. If an SUV is queued behind the pickup truck and also utilizes the same gap, the 

follow-up time for the SUV is calculated as the difference between the exit-queue times of 

the pickup truck (i.e., lead vehicle) and the SUV (i.e., following vehicle). 
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This iterative process is repeated for each queued vehicle on the minor street that utilizes the 

same gap within the conflicting traffic stream, thereby computing the FH for each vehicle 

accordingly. 

Table 7. FH estimation worksheet 

Sl. 
Subject 

Vehicle Type 
Movement Exit Queue Queued 

Follow-up Headway 

(sec.) 

1 

Car SBLT 15.14.54     

Pickup SBLT 15.15.01 Y 7 

SUV SBRT 15.15.10 Y 9 

2 

Car SBLT 15.17.33     

Pickup SBRT 15.17.40 Y 7 

SUV SBRT 15.17.58 Y 4 

3 

Firetruck SBLT 15.19.05     

SUV SBRT 15.19.10 Y 5 

Car SBLT 15.19.16 Y 6 

Car SBLT 15.19.25 Y 9 

4 
SUV SBLT 15.19.40      

Car SBRT 15.19.44 Y 4 

5 
SUV SBRT 15.20.33     

Pickup SBRT 15.20.39 Y 6 

Video Data from Intersections 

Based on the prepared list of the intersections, a comprehensive database for signalized and 

stop-controlled intersections was developed by integrating data from multiple sources. The 

process involved real-time traffic data collection, supplemented by relevant geographical 

attributes (e.g., lane geometry, lane width), operational characteristics (e.g., traffic volume, 

vehicle classification, pedestrian, and cyclist activity), and additional information (e.g., area 

type, population density). Video data served as a primary source for traffic analysis, 

particularly for capacity measurements. Given the study's focus on estimating intersection 

capacity, data collection prioritized intersections with significant traffic demand for 

signalized intersections or sufficient vehicle queuing for stop-controlled intersections. To 

analyze factors influential to observation data for each cycle, data were initially compiled 

during all visible available hours. To ensure sufficient sample size, data collection was 

conducted during peak traffic periods—6:00 A.M. to 9:00 A.M. for morning peak and 3:00 

P.M. to 6:00 P.M. for evening peak. Additional off-peak observations were also included, 

with all datasets meeting minimum sample size requirements. The HCM recommends 

extended data collection periods for planning-level analyses. 

For intersections with camera coverage from the 511 system and Louisiana DOTD cameras, 

video data were obtained by screen-recording live camera feeds. For intersections without 
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camera coverage, field cameras were installed to capture the required data for analysis; see 

Figure 15. The study utilized countCAM4, a compact and lightweight traffic counting camera 

capable of continuous multi-day video recording. A detailed description of countCAM4 is 

provided in Appendix A. These field cameras were strategically positioned to ensure 

comprehensive coverage of vehicle movements at the study approaches. 

Figure 15. Installed camera at study intersections 

 

For signalized intersections, cameras were generally positioned to monitor the major 

approaches. However, in cases requiring additional coverage, approaches were selected 

randomly. For stop-controlled intersections, cameras were positioned to record vehicle 

queues on minor roads and traffic flow on major roads. When feasible, camera angles were 

adjusted to capture multiple approaches simultaneously. At intersections where a single 

camera could not cover all necessary details, multiple cameras were deployed. 

Each camera was assigned a unique identification number linked to the intersection and its 

control type. Video recordings were captured continuously for three consecutive days at each 

intersection. The recordings were subsequently processed to extract the data required for 

analysis. Cameras were positioned to record vehicle queues on the intended approach with a 

queue; see Figure 16 (TWSC) and Figure 17 (signalized intersection). 
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Figure 16. Camera view at a stop-controlled intersection 
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Figure 17. Camera view covering multiple approaches 

 

Supplementary Data 

Roadway geometry provides essential information about the physical characteristics of a road 

directly influencing traffic flow, capacity, and safety. Relevant roadway geometry data for 

this study were collected from Google Earth Pro and Fugro iVision5 to ensure accurate and 

comprehensive data collection. Traffic volume data at the study intersections were obtained 

from the Regional Integrated Transportation Information System (RITIS) and the MS2 

Traffic Count Database System. Population density data were collected from the United 

States Census Bureau database. Additional data, such as weather and pavement conditions, 

vehicle type, number of rejected gaps, and vehicle movement type were collected directly 

from the video recordings. The data collection process from each source is described below: 

Google Earth Pro provides advanced geospatial tools for exploring and analyzing Earth’s 

surface using high-resolution satellite imagery, 3D terrain, and maps. Its features include 

importing GIS data, measuring distances and areas, creating interactive tours, and exporting 

high-resolution images and videos. In this study, Google Earth Pro was used to gather 

information on turning radius, intersection gaps, availability of pedestrian crossings, distance 

of access points from intersections, and speed limits. It is noted that this study specifically 
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measured the effective turning radius, defined as the minimum radius suitable for a vehicle 

turning from a right-hand travel lane on the approach street to the appropriate lane of the 

receiving street (see Figure 18), rather than the curvature of the curb at the corner. 

Figure 18. Effective turning radius 

 

 

Fugro Roadware iVision5 is a web-based platform for data visualization and analysis, 

providing access to data collected by an Automated Road Analyzer (ARAN) and processed 

through the Vision software suite. Accessible through a web browser, iVision5 provides 

synchronized views of video logs, pavement images, and pavement condition data from any 

location. The platform records key roadway geometric attributes such as the number of lanes, 

lane width, approach grade, and area type. The user-friendly interface of iVision5 allows for 

detailed analysis of roadway features. In this study, iVision5 was used to extract the number 

of lanes, lane width, approach grade, and area type, ensuring accurate and consistent data 

collection for analysis. Figure 19 illustrates the iVision5 interface using available data. 
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Figure 19. Fugro iVision5 interface at a signalized intersection 

 

Regional Integrated Transportation Information System (RITIS) is a comprehensive 

platform designed for transportation analysis, monitoring, and data visualization. RITIS 

integrates data from various roadway sensors, including inductive loops, side-fired sensors 

(e.g., acoustic and microwave), radar, and video detection systems. It also incorporates 

probe-based data from agency-owned Bluetooth sensors and third-party providers such as 

HERE Technologies, INRIX, and TomTom. RITIS collects traffic volume data from the 

Highway Performance Monitoring System (HPMS) and provides detailed traffic volume 

information at the Traffic Message Channel (TMC) segment level. This platform provides 

traffic volume data for all roadway types, including local and rural roads, which is 

particularly beneficial for analyzing stop-controlled intersections located on local roads and 

in rural areas. Traditional platforms, such as MS2, often lack traffic volume data for these 

regions, posing challenges in obtaining accurate information. RITIS, however, offers reliable 

and precise traffic volume data for such locations, making it a suitable resource for this study. 

The interface is illustrated in Figure 20.  
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Figure 20. RITIS platform interface 

 

MS2 Traffic Count Database System is a cloud-based platform designed to manage and 

organize traffic count data for Louisiana and other states. It supports traffic analysis, volume 

forecasting, and reporting to the Federal Highway Administration (FHWA), facilitating data-

driven transportation planning and decision-making. In this study, the MS2 platform was 

used to gather AADT data for locations not covered by the RITIS platform. Figure 21 shows 

an interface of MS2 with available traffic count locations. 

Figure 21. MS2 Traffic Count interface 
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Data Description 

A comprehensive database was developed from the collected data for both signalized and 

stop-controlled intersections to facilitate the analysis of factors influencing intersection 

capacity parameters. The influencing factors were identified based on a thorough review of 

relevant literature, their context-specific significance, and the availability of data. Since this 

study examines intersection capacity parameters for both signalized intersections and stop-

controlled intersections, the subsequent sections are organized accordingly, with each section 

providing a detailed description of the data specific to the respective intersection type.  

SFR Database 

This study selected 24 variables to identify factors affecting SFR, considering attributes such 

as intersection and lane geometry, vehicle composition, and vehicle movements, among 

others. The final dataset consists of 1,080 rows, with each row representing a single cycle 

from an intersection. Table 8 provides descriptions of the variables used in the analysis, along 

with their mean values and standard deviations. The variables include temporal attributes 

(e.g., morning, mid-day, and evening peak hours), traffic characteristics (e.g., percentage of 

heavy vehicles and turning movements), geometric features (e.g., number of lanes, lane 

width, and turn radii), environmental factors (e.g., weather and pavement conditions), and 

contextual factors (e.g., area type, population, and access points near the intersection). 
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Table 8. Variable description and summary statistics of SFR analysis 

Factors Description of Factors Mean Standard Deviation 

Morning_peak 
Time of the day is morning peak hour  

(7:00 A.M. – 9:00 A.M.) 
0.13 0.34 

Mid_day 
Time of the day is between morning and evening peak 

hours (9:00 A.M. – 3:00 P.M.) 
0.56 0.50 

Evening_peak 
Time of the day is evening peak hour  

(3:00 P.M. – 6:00 P.M.) 
0.23 0.42 

% HV 
Percentage of heavy vehicles present in the traffic during 

SFR estimation 
4.91 11.31 

% RLT 
Percentage of right- or left-turning vehicles during 

saturation headway estimation 
4.64 16.44 

# Int Legs Number of legs at the studied intersection 4.19 0.69 

# of Lanes Number of lanes at the studied approach 3.60 1.06 

Exclusive Lane The study approach is an exclusive through/left/right lane 0.56 0.49 

Shared Lane 
The study approach is a shared through-right/through-left 

lane 
0.44 0.49 

Ln_width Lane width at the studied approach (in ft.) 11.12 0.57 

App_grade Grade of the studied approach -0.01 0.49 

Urban Area type: Urban 0.96 0.20 

Acc_point_yes 
Yes if there is an access point within 250 ft. of the 

intersection 
0.75 0.43 

Speed_limit Speed limit at the studied approach (in mph) 44.50 8.68 

AADT 
Average annual daily traffic (in thousands) at the studied 

approach 
13.20 6.51 

Int_gap 
Gap between the studied intersection and the upstream 

intersection (in ft.) 
1699.91 1441.28 

R_turn_radi Effective right-turn radius at the studied approach (in ft.) 50.10 18.47 

L_turn_radi Effective left-turn radius at the studied approach (in ft.) 69.99 35.46 

Weather_clr Weather condition: Clear 0.96 0.21 

Pav_con_dry Pavement condition: Dry 0.97 0.17 

Ped_cross_yes 
Yes if there is a pedestrian crossing at the studied 

intersection 
0.12 0.33 

Area_pop 
Area population (in thousands) based on the ZIP code of 

the studied intersection 
30.46 13.98 
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CH Database 

A total of six variables were considered for factor analysis of CH, including movement type, 

intersection geometry, and traffic characteristics. The final dataset consists of 515 

observations for left-turn movements, 397 observations for right-turn movements, and 302 

observations for through movements. Table 9 provides a description of each variable 

considered, along with its mean and standard deviation. 

Table 9. Variable description and summary statistics of CH analysis 

Factors Description of Factors Mean 
Standard 

Deviation 

mvnt_type 
Movement type of the subject vehicle (Left-turning = 1, 

Right-turning = 2, Through = 3) 
1.82 0.80 

hv 
Indicator for heavy vehicles (1 = Heavy vehicle such as a 

bus or truck, 0 = Otherwise) 
0.14 0.34 

Num_rej_gap Total number of gaps rejected by the subject vehicle 2.98 3.39 

ln_cross 
Total number of lanes the subject vehicle must cross to 

complete its movement 
2.60 0.86 

maj_sl Speed limit of the major street (mph) 46.83 9.72 

aadt_maj 
Annual Average Daily Traffic (AADT) volume on the major 

street (in thousands) 
8.11 5.57 

Data Reduction 

From the raw data, SFR for each cycle was computed and then aggregated using both 

unweighted and weighted averages, with the latter based on the number of vehicles. As each 

cycle in this study includes three observations of SFR, a coefficient of variation (CV) check 

was performed. The CV, a standardized measure of relative variability, is calculated as the 

ratio of the standard deviation to the mean, expressed as a percentage. It provides a means to 

compare variability across datasets with different scales. A higher CV indicates greater 

relative variability, while a lower CV reflects less relative variability. Typically, a CV less 

than 1 (or 100%) suggests low variance, whereas a CV exceeding 1 indicates high variance. 

In this study, for cycles where the CV of the observations exceeded 1, the observation with 

the highest variance was excluded. The average of the remaining observations was then 

considered as the SFR for that particular cycle. Figure 22 shows an image of the completed 

SFR workout sheet. 
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Figure 22. Sample complete workout sheet for prevailing SFR estimation  

 

To ensure data accurately reflected typical local driver behavior, cycles with unusually large 

lost time due to driver distraction were excluded from the analysis. Figures 23 and 24 

illustrate an example of exceptionally high lost time caused by driver distraction and provide 

a thematic visualization of total lost time components. These atypical observations were 

deliberately removed to prevent extreme bias in the results. 

Figure 23. Possible distracted driver in the queue  
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Figure 24. Thematic visualization of effect of total lost time due to distraction  

 

For each intersection, both rejected and accepted gaps were observed for CH. A minimum of 

25 data points was considered for each intersection. In cases where a vehicle accepted a gap 

without rejecting any, the maximum rejected gap was recorded as 0.1 sec. If an excessive 

number of vehicles accepted a gap without rejecting any, those vehicles were excluded from 

the analysis database, provided that sufficient data were available from vehicles that had both 

rejected and accepted gaps. Additionally, at intersections with low major road traffic volume, 

there were instances where the accepted gap exceeded 60 sec. These observations were also 

excluded from the database. 

A similar approach was applied to FH data. Instances where the following vehicle took an 

excessively long time (more than 20 sec.) were removed from the analysis database. Visibly 

distracted drivers who failed to utilize potentially acceptable gaps were also excluded based 

on the observer’s judgment to avoid bias in the estimation of CH and FH. 
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Discussion of Results 

This chapter presents and discusses the analysis results from this study. The findings are 

organized into two primary sections: the first focuses on the estimation of SFR and the 

factors influencing it, while the second addresses the estimated CH and FH, exploring the 

factors affecting these parameters. The chapter concludes with recommendations for 

intersection capacity parameter values specific to Louisiana. 

Analysis Results for SFR 

The estimated base SFR values for each signalized intersection were analyzed to determine 

the average base SFR for the state, including the off-peak hours. Table 10 presents the results 

of the statistical analysis of saturation flow rates across all intersections, while Figure 25 

illustrates the distribution of SFR values at the signalized intersections included in the study. 

Table 10. Summary statistics of base SFR 

 Saturation Flow Rate 

Mean 1655 

Median 1646 

Standard Deviation 127 
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Figure 25. SFR distribution across the signalized intersections of Louisiana 

 

The mean base SFR for Louisiana was estimated to be 1,655 passenger cars per hour of green 

per lane. The standard deviation of 127 pc/hr/ln indicates a moderate level of variability in 

SFR across the studied intersections, reflecting differences in intersection characteristics, 

geometric configurations, or prevailing traffic flow conditions. 

Factors Affecting SFR From Cycle Data 

The feature selection process utilized univariate analysis to evaluate the relationship between 

each predictor and the dependent variable. This approach identified variables with strong 

statistical associations to the target outcome, retaining only those with significant predictive 

power for the modeling phase and eliminating redundant or non-informative predictors [78] 

[79]. Univariate analysis assesses each predictor individually, prioritizing those with the 

greatest potential to enhance model performance, thereby streamlining the feature set for 

predictive modeling. 

Table 11 presents the results of the univariate analysis conducted on the variables considered 

in this study. Predictor significance was assessed using p-values, with variables exhibiting a 

p-value greater than 0.05 excluded from the prediction models. Of the 25 variables initially 

evaluated, 16 demonstrated a statistically significant relationship with the dependent variable 

and were subsequently included in the modeling process. 
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Table 11. Feature selection 

Variables Estimate (P-Value) 

Mid-day (9:00 A.M. - 2:59 P.M.) -47.77 (0.0046) 

Evening peak (3:00 P.M. - 6:00 P.M.) 61.68 (0.0018) 

Percentage of heavy vehicles -8.53 (<0.0001) 

Percentage of turning movement (right/left) -2.73 (<0.0001) 

Number of intersection leg 34.02 (0.0048) 

Number of lanes 54.46 (<0.0001) 

Exclusive lane 106.99 (<0.001) 

Shared lane -106.99 (<0.001) 

Lane width 41.31 (0.0051) 

Approach grade 37.76 (0.0259) 

Speed limit 4.43 (<0.0001) 

Intersection gap 0.03 (<0.0001) 

Area population 1.64 (0.0063) 

Later, LASSO regression was employed to identify the key factors influencing SFR. This 

modeling approach selected a combination of geometric, traffic, and operational 

characteristics of signalized intersections that significantly impact SFR. The selected 

variables exhibited both positive and negative associations with SFR, indicating the varying 

nature of their influence. Figure 26 illustrates the key factors affecting prevailing SFR at 

signalized intersections. 
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Figure 26. Factors affecting cycle level prevailing SFR 

 

Among the positive contributors to prevailing SFR at cycle level, lane width (61.53) emerged 

as the most influential factor, indicating that wider lanes enhance SFR at signalized 

intersections [31]. Vehicles traveling through narrower lanes tend to maintain greater spacing, 

resulting in longer gaps and reduced flow rates [80]. Additionally, wider lanes reduce side 

friction, thereby improving traffic movement efficiency and increasing SFR [81]. 

The presence of exclusive lanes (52.71) also showed a strong positive association with SFR, 

as exclusive lanes reduce lane-changing conflicts and delays caused by slower turning 

vehicles, improving overall lane utilization. Approach grade (45.66) demonstrated a positive 

influence on SFR as well. This may be attributed to the fact that negative grades can 

introduce speed variations, increased braking, and longer reaction times, which negatively 

impact flow, whereas moderate positive grades may not substantially hinder vehicle 

progression. 

The number of intersection legs (43.01) was also positively associated with SFR. Signalized 

intersections with more legs often include dedicated and wider lanes, along with optimized 

signal phasing, which collectively enhance traffic flow. Further, an increase in the number of 

lanes (23.86) was positively correlated with SFR, as more lanes allow for higher vehicular 

throughput and facilitate smoother merging and maneuvering within the intersection, 
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resulting in shorter headways and reduced clearance times [9] [28] [29] [82]. Additional 

factors such as speed limit (4.85), evening peak hours (2.92), and area population (0.44) also 

exhibited minor positive effects on SFR. 

On the other hand, several variables were identified as negative contributors to SFR. SFR 

was found to decrease during mid-day hours (-22.21), likely due to lower traffic volumes 

compared to peak periods, which may result in less efficient utilization of green time. The 

percentage of heavy vehicles (-8.65) also had a notable negative effect on SFR. Heavy 

vehicles typically accelerate more slowly, occupy more space, and disrupt flow continuity, 

thereby lowering overall SFR [9] [82] [83]. Their presence can also influence passenger car 

behavior, prompting increased headways, deceleration, and lane changes, further degrading 

flow efficiency [84]. 

The percentage of turning vehicles (-0.11), though a smaller contributor, also negatively 

affected SFR. Turning movements generally require longer maneuver times, create additional 

conflict points, and reduce the effective capacity for through traffic [40]. Lastly, the shared 

lane variable had a near-zero coefficient (0.000), suggesting that after controlling for other 

factors, the presence of shared lanes did not have a substantial independent impact on SFR 

within the dataset analyzed. 

The LASSO regression equation for SFR estimation is: 

𝑺𝑭𝑹 =  373.9965 +  (61.5308 ∗  𝐿𝑎𝑛𝑒 𝑊𝑖𝑑𝑡ℎ)  +  (52.7128 ∗

 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 𝐿𝑎𝑛𝑒)  + (45.6570 ∗  𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝐺𝑟𝑎𝑑𝑒)  +  (43.0103 ∗

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑒𝑔)  + (23.8659 ∗  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝑎𝑛𝑒)  +  (4.8530 ∗

 𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡)  +  (2.9193 ∗  𝐸𝑣𝑒𝑛𝑖𝑛𝑔 𝑃𝑒𝑎𝑘)  +  (0.4366 ∗  𝐴𝑟𝑒𝑎 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)  +

 (0.0105 ∗  𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐺𝑎𝑝)  −  (1.1044 ∗  % 𝑜𝑓 𝑇𝑢𝑟𝑛𝑖𝑛𝑔 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡)  −

 (8.6472 ∗  % 𝑜𝑓 𝐻𝑒𝑎𝑣𝑦 𝑉𝑒ℎ𝑖𝑐𝑙𝑒)  − (22.2116 ∗  𝑀𝑖𝑑 𝐷𝑎𝑦) (13) 

Base SFR for Louisiana by Districts 

The base saturation flow rate (BSFR) was calculated for 51 signalized intersections across 

Louisiana, accounting for observed variations in lane width (average 11.2 ft.), heavy vehicle 

presence (average 4.4%), right-turn movements (average 6.6%), and left-turn movements 

(average 1.4%). After applying these adjustments, the statewide BSFR was determined to be 

1,655 pc/h/ln, which is 13% lower than the HCM default of 1,900 pc/h/ln, reflecting the 

influence of local traffic conditions on intersection capacity. As Figure 27 illustrates, the 

highest BSFR was observed in District 61 (Baton Rouge) at 1,773 pc/h/ln, while the lowest 
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was in District 3 (Lafayette) at 1,537 pc/h/ln, reflecting the range of local traffic conditions 

across the state. 

Figure 27. Base SFR by district and statewide 

 

Comparison with Other Jurisdictions in U.S. 

Figure 28 illustrates significant regional variation in SFR across different states. Louisiana’s 

measured average SFR (blue bar) is 1,582 vehicles per hour per lane, placing it below 

Maryland (2,080), Florida (1,950), and Pennsylvania (1,800). Similarly, Louisiana’s Base 

SFR (orange bar) of 1,655 vehicles per hour per lane is 12.89% lower than the HCM standard 

of 1,900 vehicles per hour per lane, while also falling below Indiana’s Base SFR range 

(1,352-2,178) and New Jersey’s range (1,900-2,100). 
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Figure 28. Comparison of estimated Louisiana SFR with other states 

 

Variation of SFR with Highway Functional Class and AADT 

In order to explore the impact of exposure on Base SFR values, which were derived from 

prevailing SFR measurements, an analysis was conducted to determine how these values may 

be influenced by traffic pressure resulting from AADT and highway functional classification. 

The results of classification by highway functional class (Figure 29) show that Principal 

Arterials have a higher BSFR (1,684 pc/h/ln) compared to Minor Arterial and Collector 

roadways (1,579 pc/h/ln). A classification by AADT (Figure 30) reveals a clear relationship 

between traffic volume and BSFR. Locations with AADT ≥ 18,752 exhibited the highest 

BSFR (1,743 pc/h/ln), while medium-volume locations (5,818 ≤ AADT < 18,752) showed a 

BSFR of 1,654 pc/h/ln, and low-volume locations (AADT < 5,818) had the lowest BSFR 

(1,575 pc/h/ln). In Figures 29 and 30, the n value indicates the number of intersections fall in 

the group.   

Figure 29. Base saturation flow rate results by highway functional class 
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Figure 30. Base saturation flow rate results by AADT 

 

Analysis Results for CH Estimation 

In this study, as presented in Table 12, the mean critical headway (CH) was estimated 

considering two intersection types: Type 1, consisting of a single-lane minor street and 

single-lane major street in each direction, and Type 2, consisting of a single-lane minor street 

and multi-lane major street in each direction. Additionally, CH was evaluated for three types 

of minor street movements: left-turn, right-turn, and through movements. This classification 

was primarily based on the number of lanes a vehicle must cross, which reflects the 

complexity and difficulty of the maneuver. For example, at Type 1 intersections, a left-

turning vehicle from the minor street must cross two lanes, one in each direction, requiring 

the driver to identify an acceptable gap in both lanes of opposing traffic on the major street. 

In contrast, at Type 2 intersections, where the major street includes multiple lanes in each 

direction, the driver must assess gaps across several lanes in the same direction, further 

increasing the complexity of the maneuver. 

For right-turning movements, the driver typically needs to evaluate only one conflicting lane, 

regardless of whether the intersection is Type 1 or Type 2. Table 13 presents the estimated 

mean CH values categorized by intersection type and minor street movement, providing 

insights into how intersection layout and movement type influence gap acceptance behavior. 
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Table 12. Geometric configurations of TWSC intersection 

Type 1 TWSC intersection 

 

Lanes on major street = 1 

Lanes on minor street = 1 

Major street exclusive left-turn lane (optional) 

Type 2 TWSC intersection 

 

Lanes on major street = 2 or more 

Lanes on minor street = 1 

Major street exclusive left-turn lane (optional) 

Table 13. Estimated values of CH for Louisiana 

Geometry 
Type 1 

Single Lane Major Street 

Type 2 

Multi-lane Major Street 

Movement MinLT MinRT MinTH MinLT MinRT MinTH 

Mean Critical Headway (sec) 9.9 8.7 8.9 10.1 7.1 9.7 

Standard Deviation 1.6 2.2 1.9 1.6 0.7 1.4 

The results indicate that the CH is higher for left-turn and through movements of minor street 

vehicles at Type 2 stop-controlled intersections compared to Type 1 intersections. This 

outcome is expected, as vehicles at Type 2 intersections must cross a greater number of lanes, 

resulting in an increased number of conflict points. Interestingly, the CH for right-turn 

movements from the minor street is 1.6 sec. lower at Type 2 intersections than at Type 1. 

Regardless of intersection type, right-turning vehicles encounter only one conflict point with 

major street traffic traveling in the rightmost lane. At Type 2 intersections, where multiple 

lanes are present in each direction, major street vehicles are more likely to occupy the left 

lanes, thereby reducing conflicts in the rightmost lane and allowing minor street right-turning 

vehicles to accept shorter gaps. 
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Factors Affecting Critical Headway 

LASSO regression was applied to identify the factors influencing CH at TWSC intersections 

in Louisiana and to develop corresponding predictive equations. To ensure the model 

accurately captured the key influencing factors across various traffic scenarios, separate 

regression models were developed for each movement type. Additionally, a combined model 

was formulated to incorporate all movement types. Table 14 presents the identified factors 

influencing CH for each movement category, while Equations 14-17 provide the regression 

equations for the individual movement types, as well as the combined model. 

Table 14. Factors affecting critical headway 

Movement Variables Coefficients 

Minor street left turn 
Number of heavy vehicles 0.0593 

Major street AADT -0.1905 

Minor street right turn 

Number of heavy vehicles 0.6885 

Major street speed limit 0.0967 

Major street AADT -0.0762 

Number of rejected gap -0.0772 

Number of lanes on major street -0.2324 

Minor street through 

Number of heavy vehicles 0.6009 

Major street speed limit 0.0617 

Number of rejected gap 0.0295 

Minor Street Left Turn (R2 = 0.41): 

𝑪𝑯𝑴𝒊𝒏𝒐𝒓𝑳𝒕  =  11.0158 +  (0.0593 ∗  ℎ𝑒𝑎𝑣𝑦_𝑣𝑒ℎ𝑖𝑐𝑙𝑒)  −  (0.1905 ∗  𝑎𝑎𝑑𝑡_𝑚𝑎𝑗) 

(14) 

Minor Street Right Turn (R2: 0.49): 

𝑪𝑯𝑴𝒊𝒏𝒐𝒓𝑹𝒕  =  5.2334 +  (0.6885 ∗  ℎ_𝑣𝑒ℎ)  +  (0.0967 ∗  𝑚𝑎𝑗_𝑠𝑙)  − (0.0762 ∗

 𝑎𝑎𝑑𝑡_𝑚𝑎𝑗)  −  (0.0776 ∗  𝑛𝑢𝑚_𝑟𝑒𝑗_𝑔𝑎𝑝)  −  (0.2324 ∗  𝑛𝑢𝑚_𝑚𝑎𝑗_𝑙𝑛)    (15) 

Minor Street Through (R2 = 0.26): 

𝑪𝑯𝑴𝒊𝒏𝒐𝒓𝑻𝒉  =  6.2995 +  (0.6009 ∗  ℎ_𝑣𝑒ℎ)  +  (0.0617 ∗  𝑚𝑎𝑗_𝑠𝑙)  + (0.0295 ∗

 𝑛𝑢𝑚_𝑟𝑒𝑗_𝑔𝑎𝑝)        (16) 
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Combined (R2 = 0.46): 

𝑪𝑯 =  6.7309 +  (0.3564 ∗  ℎ𝑣𝑒ℎ) +  (0.2559 ∗  𝑐𝑟𝑜𝑠𝑠) +  (0.0607 ∗  𝑚𝑎𝑗𝑠𝑙) −

 (0.0633 ∗  𝑛𝑢𝑚𝑚𝑎𝑗𝑙𝑛
) −  (0.1152 ∗  𝑎𝑎𝑑𝑡_𝑚𝑎𝑗)     (17) 

The regression analysis results indicate that CH for minor street left-turn movements 

increases when the subject vehicle is a heavy vehicle. This finding aligns with expectations, 

as heavy vehicles typically have slower acceleration rates, requiring more time to merge into 

major street traffic and thus necessitating larger gaps compared to passenger cars [71] [74]. 

Conversely, major street AADT was found to negatively influence CH, indicating that as 

traffic volume increases, the availability of acceptable gaps decreases, often compelling 

drivers to accept smaller gaps [72] [85]. 

For right-turn movements, vehicle type and major street traffic volume similarly affect CH. 

Additionally, other factors were found to be significant. CH increases with higher major 

street speed limits, as faster-moving vehicles reduce drivers’ reaction time and increase 

uncertainty in judging safe gaps, thereby prolonging waiting times [86] [87]. Conversely, CH 

decreases as the number of rejected gaps increases, suggesting that after multiple 

unsuccessful attempts, drivers become more inclined to accept shorter gaps, potentially 

compromising safety [72] [73]. Further, the number of lanes on the major street was found to 

negatively influence CH for right-turning movements. Right-turning drivers typically seek a 

gap in the rightmost lane; with more lanes, traffic tends to be distributed across multiple 

lanes, reducing flow intensity in any single lane and increasing the frequency of acceptable 

gaps, thereby lowering CH. 

For through movements, CH was influenced by vehicle type, major street speed limit, and the 

number of rejected gaps, all of which were associated with increased CH, reflecting greater 

hesitation or difficulty in accepting suitable gaps under these conditions. 

Analysis Result for FH Estimation 

For FH estimation, the mean value was determined based on the movement type of the 

following vehicle. Table 15 presents the mean values of FH across different movement types. 

Clearly, through movement had higher FH estimates than those of turning movements. 
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Table 15. Estimated follow-up headway values for Louisiana 

Movement MinLT MinRT MinTH 

Mean Follow-up headway (FH) 5.9 5.8 6.5 

Standard Deviation 1.7 2.4 1.3 

Table 16 shows a comparison between the range of estimated values for Louisiana and the 

default values range provided in the Highway Capacity Manual (HCM). The values estimated 

in Louisiana are significantly higher than the default values of the HCM. The estimated 

Louisiana values are indicative of Louisiana traffic conditions on TWSC minor roads, 

reflecting driving behavior as well. 

Table 16. Comparison of default CH and FH values with Louisiana values 

Parameters Default HCM values Estimated values for Louisiana 

Critical Headway, CH (sec.) 4.1 - 7.3 7.1 – 10.1 

Follow-up Headway, FH (sec.) 2.2 – 4 5.9 – 6.5 
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Conclusions 

Intersection capacity parameters (SFR, CH, and FH) play an important role in accurate 

capacity estimation and signal design, ultimately impacting network-level transportation 

planning. Therefore, accurately estimating these parameters is essential. While the HCM 

provides default values for intersection capacity parameters, HCM states that these values 

may vary based on geographic location due to unique geographic characteristics, local traffic 

conditions, and other influential factors. Efficient capacity estimation allows planners to 

design and manage intersections by predicting congestion, optimizing signal timings, and 

deciding on infrastructure improvements. 

This study estimated and recommended intersection capacity parameter values specific to 

Louisiana. Additionally, it identified the factors affecting SFR and CH and developed 

predictive models for both parameters. A comprehensive literature review examined 

methodologies for estimating intersection capacity parameters (SFR, CH, FH) across various 

jurisdictions, analyzing peer-reviewed journals and government reports with an emphasis on 

empirical field studies rather than theoretical approaches. The review is organized by 

intersection type: signalized intersections (SFR) and stop-controlled intersections (CH and 

FH), providing the foundation for developing locally estimated parameters for Louisiana’s 

signalized and TWSC intersections. 

After a selection approach from 511 systems, highway section data, and DOTD district 

representatives, a total of 77 intersections (51 signalized and 26 TWSC intersections) across 

eight districts in Louisiana were analyzed. Traffic data were collected using video recordings, 

and supplementary data, including intersection geometry, geographic characteristics, and 

traffic conditions. 

A collective analysis of compiled data from selected signalized intersections was conducted 

using a regression approach to identify key factors influencing cycle-by-cycle SFR. 

Regression analysis identified several factors influencing SFR: intersection geometry (e.g., 

lane width, presence of exclusive lanes, approach grade, and number of intersection legs), 

speed limit, and traffic hour positively influenced SFR by increasing its value, while the 

presence of heavy vehicles and off-peak hours had a negative impact.  

Using the adjustment approach outlined in the HCM, the base-adjusted SFR for signalized 

intersections in Louisiana was estimated at 1,655 pc/hr/ln. Compared to the HCM default 

recommended value of 1,900 pc/hr/ln, this finding suggests that the average SFR at 
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signalized intersections in Louisiana is significantly lower than the HCM default value. The 

highest BSFR was observed in District 61 (Baton Rouge) at 1,773 pc/h/ln, while the lowest 

was in District 3 (Lafayette) at 1,537 pc/h/ln, reflecting the range of local traffic conditions 

across the state. 

This study derived local critical headway (CH) and follow-up headway (FH) values for two-

way stop-controlled (TWSC) intersections to enhance capacity analysis accuracy in 

Louisiana. CH values, calculated using Maximum Likelihood Estimation (MLE), ranged 

from 7.1 to 10.1 sec., significantly higher than the HCM range of 4.1 to 7.3 sec. These values 

increased with heavy vehicles, number of rejected gaps, and major street speed limits, while 

decreasing with major street AADT and number of lanes. Similarly, FH values determined 

through direct estimation ranged from 5.9 to 6.5 sec. depending on movement type, 

exceeding the HCM defaults of 2.2 to 4 sec. These higher values accurately reflect local 

driving behavior at Louisiana's predominantly low-volume TWSC intersections. Table 17 

presents the HCM-recommended values for each intersection capacity parameter alongside 

the estimated values for Louisiana. 

Table 17. Comparison of estimated parameters with HCM default values 

Parameters Default HCM values Estimated values for Louisiana 

Base Saturation Flow Rate, BSFR (pc/h/ln) 1,900 1,637 

Critical Headway, CH (sec) 4.1 - 7.3 7.1 – 10.1 

Follow-up Headway, FH (sec) 2.2 – 4 5.9 – 6.5 
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Recommendations 

The fundamental recommendation for applying new intersection capacity parameters for 

signalized and TWSC intersections in Louisiana stems from the following HCM principle:  

“Although the HCM provides default values for its methodologies, the 

analyst should be mindful that they represent typical national values and that 

typical conditions within a state, region, or community may be different. When 

default values are applied frequently in analyses, the use of local default values 

can help reduce the uncertainty in the analysis results.” 
 

This study evaluated the locally adjusted base saturation flow rate (BSFR) across 51 

signalized intersections in Louisiana, focusing on the influence of regional traffic dynamics 

on intersection performance. The BSFR represents the expected average flow rate for a 

through-traffic lane under exceptionally favorable geometric and traffic conditions (e.g., no 

grade, no trucks, etc). Louisiana's estimate is 1,655 pc/h/ln. In practice, the prevailing SFR 

should be estimated from this BSFR by adjusting for prevailing geometric and traffic 

conditions; Equation 1 (HCM 7th edition Eq 19-8) lists those adjustments that can be made 

for estimating prevailing SFR. 

In the process of estimating prevailing SFR, adjustments can be made based on observed 

factors such as lane width, heavy vehicle presence, right-turn movements, and left-turn 

movements, as well as other applicable factors identified in Equation 1 (HCM 7th edition Eq 

19-8). The statewide BSFR averaged 1,655 pc/h/ln, a 13% reduction from the HCM default 

of 1,900 pc/h/ln, indicating a reflection of local driving behavior and traffic patterns at 

signalized intersections that differ from HCM standards. The BSFR variation across districts 

is summarized below: 

• District 2 (New Orleans): 1,608 pc/h/ln 

• District 3 (Lafayette): 1,537 pc/h/ln 

• District 4 (Shreveport): 1,638 pc/h/ln 

• District 5 (Monroe): 1,733 pc/h/ln 

• District 7 (Lake Charles): 1,661 pc/h/ln 
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• District 8 (Alexandria): 1,620 pc/h/ln 

• District 61 (Baton Rouge): 1,773 pc/h/ln 

• District 62 (Hammond): 1,608 pc/h/ln 

The adjusted BSFR offers a district-wide estimate, facilitating a planning-level baseline for 

decisions across the entire district and supporting broader-scale planning efforts. However, 

caution is advised when applying it to infrastructure decisions for individual intersections. 

For signal improvements, infrastructure upgrades, or changes in intersection type, it is 

advisable to apply specific adjustments using the HCM manual tailored to each intersection 

to ensure accuracy and effectiveness. Based on the study’s findings and associated 

correlation with traffic exposure and highway functions, the recommended values are 

outlined in Table 18 with specified criteria. 
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Table 18. Recommended values of Base SFR 

Category Application Criteria Sub-Category Base SFR 

(pc/h/ln) 

Statewide 

Broad scale planning level; instead of default HCM 

value of 1,900 pc/h/ln, adjustment will be required 

according to the factors in HCM 7th edition Eq 19-8 to 

estimate the prevailing SFR. 

All Districts 1,655 

District 

If planning and operational analysis encompass a 

whole district, adjustment will be required according to 

the factors in HCM 7th edition Eq 19-8 to estimate the 

prevailing SFR. 

District 2 1,608 

District 3 1,537 

District 4 1,638 

District 5 1,733 

District 7 1,661 

District 8 1,620 

District 58* 1,655 

District 61 1,773 

District 62 1,608 

Highway 

Functional 

Class 

If planning and operational analysis encompass 

multiple districts with the same functional class. 

Otherwise, the statewide Base SFR value of 1,655 

pc/h/ln should take precedence. Adjustment will be 

required according to the factors in HCM 7th edition 

Eq 19-8 to estimate the prevailing SFR. 

Principal Arterial 1,684 

Lower functional 

class 
1,579 

Average 

annual daily 

traffic 

(AADT) 

If planning and operational analysis encompass 

multiple districts within the same AADT group. 

Otherwise, the statewide Base SFR value of 1,655 

pc/h/ln should take precedence. Adjustment will be 

required according to the factors in HCM 7th edition 

Eq 19-8 to estimate the prevailing SFR. 

AADT ≥ 18752 1,743 

18752 > AADT 

≥ 5818 
1,654 

AADT <  5818 1,575 

Note: *The default state estimate value should be used here since no data has been collected for District 58. 

In terms of TWSC operations, the higher values compared to HCM defaults remain relevant 

for TWSC intersections, as they are predominantly situated at low-volume minor roads, 

capturing realistic local conditions and an upgrade from HCM estimates. Planners are 

advised to still apply these values cautiously, CH (7.1 to 10.1 sec.) and FH (5.9 to 6.5 sec). 

For a relatively large number of intersections that need more precise applications, CH 

equations should be used reflecting the impact of heavy vehicles and other roadway factors. 
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Planners can further validate these parameters for specific intersection improvements when 

necessary—for example, when implementing physical measures to improve capacity or when 

establishing benchmark capacity estimates for future configuration improvements, such as 

conversion to signalized intersections and roundabouts.  

When implementing these intersection capacity parameters (BSFR, CH, FH) in simulation or 

traffic analysis software, engineers are advised to take specific precautions. For large-scale 

applications, a thorough examination is needed for all interconnected attributes that will 

require adjustment as a result of changing the base parameters. For small-scale applications, 

further validation can be made for the estimated capacity parameters through field 

observations or historical data before implementation, ensuring all dependent variables are 

appropriately calibrated or adjusted, if needed, to maintain system consistency.  

This study’s scope was limited to four-leg signalized intersections and TWSC for consistency 

and to avoid bias. Due to visual limitations in camera placement, in several cases the 

estimations were made by averaging estimates for multiple lane groups. Additionally, future 

studies can be expanded to intersection types with different configurations to establish a 

broader baseline, or to different intersection types such as roundabouts. Although this study 

estimates the local parameters in a post-COVID, somewhat stable traffic condition, future 

planning at statewide and metropolitan levels may require further calibration with 

consideration of the project life cycle. 

In the future, advanced technologies can be utilized, if available, to enhance real-time 

capacity estimates with greater precision. Louisiana's ongoing effort for Transportation 

Systems Management and Operations (TSMO) implementation could enable agencies to 

approach regional transportation as an interconnected network, optimizing traveler 

experience and system performance through improved multimodal management. Future 

updates of real-time intersection capacity estimates can strengthen these initiatives, 

particularly with V2X (vehicle-to-everything) deployment and coordinated adaptive 

intersection operations. Further, capacity adjustment factors should be developed for various 

penetration levels of connected and automated vehicles (CAVs) to adapt existing HCM 

methodologies for emerging CAV applications. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

AASHTO American Association of State Highway and Transportation Officials 

AADT Annual Average Daily Traffic 

ARAN Automated Road Analyzer 

BLM Binary Logit Model 

BSFR Base Saturation Flow Rate 

CBDs Central Business Districts 

CCTV Closed Circuit Television 

CDF Cumulative Distribution Function 

CH Critical Headway 

CV Coefficient of Variation 

DOTD Department of Transportation and Development 

FH Follow-up Headway 

FHWA Federal Highway Administration 

HCM Highway Capacity Manual 

HMM Hidden Markov Model 

HPMS Highway Performance Monitoring System 

hr hour(s) 

ln lane(s) 

LTRC Louisiana Transportation Research Center 

m meter(s) 

MLE Maximum Likelihood Estimation 

MLM Modified Raff Method 

OLS Ordinary Least Squares 

OTM Occupancy Time Method 

PCU Passenger Car Units 



—  86  — 

 

Term Description 

PEM Probability Equilibrium Method/Equation 

RITIS Regional Integrated Transportation System 

SFR Saturation Flow Rate 

SUV Sport Utility Vehicle 

SVM Support Vector Machines 

TMC Traffic Message Channel 

TRRL Transport and Road Research Laboratory 

TSMO Transportation Systems Management and Operations 

TWSC Two-Way Stop Controlled 
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Appendix 

Appendix A: countCAM4 Details 

countCAM4 Capability  

Designed and assembled in the U.S. by StreetLogic Pro, the countCAM4 is a compact, 

lightweight traffic counting camera weighing only 2.8 lbs. It is easily deployable and allows 

users to collect multiple days of video data on a single device. Additionally, it can collect 

directional vehicular volume. The countCAM4 features dual modes of data collection: 

counter mode for direction, speed, and volume, and camera mode for video data collection 

[80]. 

The countCAM4 does not require users to interact with traffic while collecting data, 

providing the survey team with greater flexibility and ensuring their safety. Its setup time is 

very short, taking less than 3 min. The smart technology used in this device optimizes 

computing power, enabling the camera to run for up to 100 continuous hrs. without external 

batteries, allowing for the collection of traffic data over multiple consecutive days. This 

equipment is also highly durable, having been tested for industrial-grade resilience to 

withstand heat, snow, rain, and drops. It operates reliably in both rainy and snowy weather 

conditions [80]. 
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Figure 31. countCAM4 

 

The countCAM4 utilizes GPS to set the date and time, requiring an initial GPS lock to ensure 

accurate synchronization with the user's time zone, a process necessary only during the first 

use or when switching time zones. It communicates with WiFi-enabled devices via a local 

wireless network and allows users to choose specific hours for recording. The countCAM4 

offers five recording quality options, including 10fps Low Quality (480x360), 10fps 

Balanced (640x480), and 25fps Balanced (640x480), with the recommended setting being 

10fps Balanced quality [81]. 

Installation of countCAM4 

When in camera mode, the countCAM4 should be installed on a signpost or utility pole. It is 

recommended that the camera be positioned 50-150 ft. away from the center of the 

intersection to ensure all movements are visible within the camera's view. There should be no 

objects in front of the camera that might obstruct the view [81]. 

When in Counter Mode, the countCAM4 should be installed on a signpost or utility pole next 

to the two-lane roadway where data is to be collected. The countCAM4 camera lens should 

be positioned 3 to 5 ft. above the roadway surface and oriented perpendicular to the roadway. 

To ensure accurate traffic volume counts, the device should be placed at least 6 ft. away from 

the closest vehicle. For accurate speed data collection, this distance should be increased to 

approximately 15 ft. from the nearest lane for traffic moving at 35 mph or less, and 
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approximately 20 ft. for traffic moving at 40 mph or greater. Additionally, the countCAM4 

should not be pointed at locations where busy sidewalks, driveways, or other roads are 

visible in the background, as the device detects all objects in its field of view and can 

overcount in these situations [81]. 

Figure A32. Installed countCAM4 

 

countCLOUD 

Provided by the same company, StreetLogic Pro, countCLOUD is a traffic video processing 

system that offers an accurate, quick, simple, and cost-effective way to analyze traffic videos 

into meaningful data. It provides precise point counts and turning movement counts with 95-

98% accuracy, along with options for 2-, 3-, and 13-class vehicle turning movement counts, 

point counts, or pedestrian/bike trail count processing. After uploading the video data on the 

system, a comprehensive report is prepared within three business days. The system features 

an interactive and user-friendly central dashboard that allows users to navigate and manage 

traffic counts efficiently. Users can add and configure counts of any length to match their 

needs. Additionally, it includes features such as project overviews and user additions. 

Overall, this system offers a convenient and cost-saving method for processing traffic counts 

from video data, reducing both time and complexity [82].
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Appendix B: Example Adjustment for BSFR 

Figure A33. Example of adjustment of SFR 
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