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assignment model with drivers’ route choice parameters embedded that could provide the best fit for 
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Abstract 

This project studied if and how behavioral models and traffic simulation frameworks 

created beforehand could be used to predict hurricane evacuation patterns in a new storm 

setting, with the anticipation of being able to conduct a real-time simulation in the future. 

Using publicly available data, this study first created synthetic populations by year for the 

study region of New Orleans, Louisiana. Findings from this process show that 

simulations of evacuation behavior can only be performed for storms that occurred 

between 2013 and two years prior to the current year. Additionally, it may not be 

appropriate to use population data from a different year to simulate evacuation behavior 

in a current year due to population migration.  

Using synthetic populations created for 2021, this project utilized behavioral models 

estimated beforehand to simulate evacuation choices for households during Hurricane 

Ida, which facilitated discussions about model transferability. It was found that the 

lognormal distance function parameters in the evacuate/stay and departure timing joint 

choice models, as well as the destination risk perception values in the destination choice 

model, are the two most critical factors that need to be updated. Both factor updates are 

related to storm characteristics and can be completed with live storm feeds, which 

indicates that real-time data input is indispensable in improving prediction accuracy.  

In simulating evacuation traffic, this project tested 20 simulation scenarios to look for a 

traffic assignment model with drivers’ route choice parameters embedded that could 

provide the best fit for traffic observed during the Hurricane Ida evacuation. It was found 

that the stochastic shortest path model, which minimizes travel time and assumes 50% of 

informed drivers, performed the best. 

Overall, this study highlights the necessity and challenges of having real-time data (e.g., 

population profiles, storm forecasts, and near-real-time background traffic) in hurricane 

evacuation simulations. This information enhances the usefulness of estimated statistical 

models in practical applications and emphasizes the importance of considering human 

components, including demographic profiles and choice behavior, in creating digital 

twins to better support future disaster management. 
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Introduction 

Researchers from various disciplines have worked to estimate several evacuation demand 

models over the last decade [1]. Louisiana Transportation Research Center (LTRC) is one 

of the major research groups focused on evacuation demand modeling. All of the 

modeling components developed by LTRC were assembled in a computer package called 

“Hurricane Evacuation Modeling Package (HEMP)” between 2017 and 2020 [2]. HEMP 

allows the estimation of evacuation traffic depending on storm characteristics and 

decisions made by emergency managers. HEMP has been set up to operate in the New 

Orleans, Louisiana, metropolitan area and was tested using data from Hurricane Katrina 

in 2005. A graphic user interface was created to make HEMP easily accessible for 

emergency managers, who may not be familiar with the traffic simulation tools running 

in the background. Emergency managers are only asked to enter their decisions, such as 

phased evacuation orders, through the developed user interface. With other inputs 

provided in the background, HEMP automatically generates outputs, such as average 

travel time, to help emergency managers evaluate the impacts of their decisions.  

This project was designed to test the HEMP computer package to evaluate and improve 

its accuracy, usefulness, and running time before it is released for practical use. The 

project team made the following improvements:  

1. HEMP’s input data was examined to ensure models were applied in the same way 

they were estimated.  

2. Simulation outputs were compared with observed data, such as survey responses 

and traffic counts, to improve confidence in HEMP’s prediction ability.  

3. Several changes were made to improve HEMP’s fitness for actual emergency 

management operations in Louisiana, such as the geographic unit receiving 

evacuation orders.  

4. HEMP’s computation speed was improved to provide reliable outputs in a shorter 

amount of time.  

Additionally, this project sought to identify enhancements that could be made to further 

enable the HEMP computer package to support emergency management in Louisiana in 

an era with digital twins, which are “digital replicas of a physical object, person, system, 

or process, contextualized in a digital version of its environment” [3]. 
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Literature Review 

The following section first presents evacuation behavioral responses collected from 

household surveys conducted after major storms that affected southeast Louisiana, 

findings from past hurricane evacuation studies that discussed model transferability, and a 

discussion of if and how local demographics may change over the course of recurring 

disasters. The subsequent section presents content related to evacuation traffic 

simulations, including an explanation of the impacts of signal timing plans in such 

simulations and the importance of considering drivers’ route choice behavior in disaster 

evacuation scenarios. 

Simulating Hurricane Evacuation-Related Behavior 

Past studies estimated statistical models based on survey responses to identify factors that 

influence the hurricane evacuation-related behavior of households to support evacuation 

simulation. These models illustrate that evacuation behavior is affected by both external 

conditions (e.g., storm intensity) and internal mechanisms (e.g., the risk value that the 

public assigns to storm intensity). If major external factors have been captured and 

internal choice mechanisms remain the same, the behavioral models estimated for one 

storm should perform well in predicting the evaluation behavior of households in a new 

storm setting [4]. This process is known as model transferability, which tests the stability 

of internal choice mechanisms within the population over various times and locations. 

Applying and transferring the estimated evacuation models to synthetic populations 

created for a region can help predict evacuation patterns, which are of vital importance to 

emergency management decisions, such as when and where to issue an evacuation order. 

This project built upon past evacuation behavioral studies and identified what real-time 

information and value updates are needed for higher prediction accuracy. The set of 

evacuation-related behavioral models used in the current study included the evacuate/stay 

and departure timing joint choice models estimated using data collected after Hurricane 

Gustav [5]; the mode and accommodation choice models estimated using data collected 

after Hurricanes Irene, Sandy, and Gustav [4]; and the destination choice model estimated 

using data collected after Hurricane Floyd [6]. This set of models was applied because 

they aligned well with the study region characteristics and were integrated in a simulation 

framework developed for the study region of coastal Louisiana [2]. 
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Post-Storm Behavioral Survey Responses 

States on the U.S. Gulf Coast are frequently affected by tropical storms. Louisiana has 

experienced between $200-300 billion in economic losses due to tropical storms over the 

last 45 years [7], accounting for approximately 86% of the total economic loss from 

weather-related disasters during this timeframe. 38 tropical storms affected Louisiana 

between 2001 and 2021 [8]. Figure 1 shows several of the well-known billion-dollar 

storm events: Katrina (2005), Harvey (2017), Laura (2020), and Ida (2021). 

Figure 1. Major hurricanes affecting Louisiana [8] 

 

For some time, researchers have studied the evacuation-related choices made by 

households during hurricanes by conducting post-storm behavioral surveys. Table 1 

presents responses collected from several such surveys. Hurricanes Katrina (2005) and 

Ida (2021) are two of the most devastating storms to strike southeast Louisiana over the 

past two decades. Hurricane Katrina made landfall as a Category 3 storm and resulted in 

severe storm surge, which led to a levee system failure in New Orleans [9]. Both Wu et 

al. [10] and Murray-Tuite et al. [11] studied survey responses collected after Hurricane 

Katrina. Table 1 presents statistics from responses that were collected from Louisiana 

only. Hurricane Ida (2021) made landfall in Louisiana as a Category 4 storm with 150-

mph winds [12]. The data source for Hurricane Ida is a two-wave cross-sectional 

household behavioral survey conducted in 2021 with 1,369 responses [13]. Table 1 

presents statistics from responses that were collected from a similar region as the post-

Katrina survey, making the two data sets relatively comparable. Major observations 

reflecting the commonalities between the two surveys include:  
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1. Most respondents chose to evacuate one day before storm landfall. 

2. Most respondents chose to evacuate using their own vehicle and go to friends’ or 

relatives’ homes. 

3. Many respondents chose to evacuate using I-10 West toward Texas. 

Evacuation patterns in the two storms did have several differences, including:  

1. Early departure timing (i.e., 20% of respondents evacuated three days before 

storm landfall during Ida, but only 4% did so during Katrina) 

2. Late departure timing (i.e., 13% of respondents evacuated on the day of storm 

landfall during Ida, but only 1% did so during Katrina) 

3. Change in evacuation destination (i.e., more respondents evacuated using I-10 

West toward Lake Charles and Houston, rather than north to Central Louisiana, 

during Ida than Katrina)  

These changes in evacuation patterns could be due to the change in external conditions 

(e.g., storm characteristics) rather than internal choice mechanisms. The next subsection 

continues to review the model transferability of related studies in hurricane evacuation. 

Table 1. Household evacuation behavioral statistics 

 Katrina (2005) Ida (2021) 

Study area 

Two coastal parishes in New 

Orleans-Metairie, Louisiana 

(Jefferson and St. Charles) 

Seven coastal parishes 

in New Orleans-

Metairie, Louisiana 

Sample size 269 408 

Evacuate/Stay   

Chose to evacuate 86% 68% 

Evacuation timing   

3 days before landfall 4% 20% 

2 days before landfall 44% 27% 

1 day before landfall 51% 40% 

On the day of landfall 1% 13% 

Mode choice   

Own vehicle 89% (na) 

Ride with others 8% (na) 

Transit 1% (na) 

Other modes 2% (na) 

Accommodation choice   

Friends or relatives 61% 50% 

Hotels/motels 18% 41% 

Public shelters 3% 2% 

Others 18% 7% 

Destination choice   

New Orleans and nearby 10% 12% 
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 Katrina (2005) Ida (2021) 

Central/Northern LA 19% 4% 

Baton Rouge, LA 12% 6% 

Lafayette, LA 7% 2% 

I-10 West (e.g., Lake Charles and Houston) 13% 25% 

Other places/states 39% 52% 

Note: ‘na’ means not available 

Model Application and Transfer in Past Evacuation Simulations 

HURREVAC (Hurricane Evacuation) is a situational awareness tool used widely among 

emergency managers in supporting their hurricane evacuation decision-making [14]. This 

tool brings forecasts from the National Hurricane Center (NHC) and evacuation clearance 

times from the Hurricane Evacuation Studies (HES) together in calculating evacuation 

decision time. Its latest web browser-based platform has been available since the 2020 

hurricane season. In its current version, HURREVAC calculates evacuation timing by 

certain scenarios. Scenarios are defined by zones to evacuate, public response curve (i.e., 

fast, moderate, and slow), and seasonal populations (i.e., low, medium, high, and worst). 

Research teams from different regions in the U.S. have been developing more advanced 

theoretical tools and frameworks to better predict evacuation travel, supporting public 

agencies’ decision-making. For example, Wolshon et al. applied agent-based traffic 

simulations in studying hurricane evacuation traffic in Louisiana [15]. The evacuation 

demand was generated based on the evacuate/stay decision model estimated by Gudishala 

and Wilmot [5]. The Gulf Coast TRANSIMS megaregion model was tested with data 

from Hurricanes Katrina (2005) and Gustav (2008) in assessing and evaluating traffic 

conditions under different storm conditions and traffic management strategies, such as 

phased evacuation orders and contraflow [15]. Murray-Tuite and Ukkusuri et al. also 

applied the agent-based modeling approach to simulate evacuation activities [16] [17] 

[18]. In 2017, they introduced an agent-based regional evacuation simulator coupled with 

user-enriched behavior called A-RESCUE, and they upgraded it in 2019 [19]. The 

simulator has two modules: household decision-making and traffic flow. Each household 

represents an agent making various evacuation-related decisions and pre-evacuation trips 

[17]. The household decision-making module communicates the timing, destination, and 

activity duration of each trip, which are then used as inputs in the traffic flow module. 

The traffic flow module uses an En-Route Route Choice Model, which is based on the k-

shortest path routing algorithm, to simulate vehicle routing. The simulator utilized the 

Miami-Dade County, Florida, network as the testing scenario. More recently, Davidson et 

al. proposed an Integrated Scenario Ensemble-based evacuation (ISE) framework in 2020 
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[20] [21]. The hazard modeling portion of the framework considers the uncertainty in 

hurricane evolution and provides an ensemble of hurricane scenarios with inundation 

level and wind speed at each time step. The evacuation planning portion of the 

framework then solves a bi-level optimization problem. The objective is to minimize the 

number of people at risk and the expected evacuation travel time, which are performance 

evaluation statistics used in the framework. The higher-level problem is related to 

emergency managers’ decisions whether or not to issue an evacuation order to a single 

zone or several zones at each time step. The lower-level problem is how households 

living in the study area make their decisions based on the given evacuation order. The 

following evacuation decision models were used by Davidson et al.: the evacuate/stay 

decision model estimated by Fu and Wilmot [22]; the accommodation choice model 

estimated by Mesa-Arango et al. [23]; and the DUE traffic assignment model [24]. 

Overall, the framework developed by Davidson et al. generates a tree of evacuation order 

recommendations to emergency managers. The theoretical framework is functioning and 

was tested in North Carolina with data from Hurricane Isabel (2003). 

Some researchers paid attention to evacuation behavioral model transferability on a 

survey-to-survey basis. For example, Fu et al. [25] applied their evacuate/stay and 

departure timing choice models estimated with data collected after Hurricane Floyd 

(1999, South Carolina) in predicting the behavioral pattern for Hurricane Andrew (1992, 

Louisiana). The researchers tried to update the alternative specific constant in transferring 

their model to achieve higher prediction accuracy but found the improvement was 

marginal. Their research concluded that “applying the same distance function (followed a 

gamma distribution) to the two different hurricanes was a major source of error in model 

transfer,” thus requiring further investigation. Gudishala and Wilmot [26] continued the 

research by transferring evacuate/stay and departure timing choice models estimated with 

data collected after Hurricane Gustav (2008, Louisiana) in predicting the behavioral 

pattern for Hurricane Andrew (1992, Louisiana). This study emphasized the importance 

of including time-dependent factors, such as time-of-day and distance function in a 

lognormal distribution, in an evacuate/stay model for better model transferability. Some 

past studies also tried to improve evacuate/stay model transferability by estimating a 

model with a pooled dataset, which included survey responses collected after multiple 

hurricanes [27]. 

Overall, the model transferability efforts detailed above were spent in applying the 

estimated models to predict patterns observed from a different survey. Past studies have 

not extended their model application to predict patterns observed from synthetic 
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populations, which are created by year to test model transferability. This research fills in 

the gap and continues to answer how the estimated models could be further improved 

with minimum effort for higher prediction accuracy. 

Population Migration in Responding to Natural Disasters 

The purpose of creating synthetic populations for each year is related to population 

migration concerns. Population migration is common; therefore, local demographics 

change when researchers make year-to-year comparisons. For example, nearly eight 

million people in the U.S. moved between states in 2021; some of the already highly 

populated states on the Gulf Coast experienced significant population increases (e.g., 

Texas and Florida), while other states observed population declines (e.g., Louisiana) [28]. 

Within each state, work-from-home policies implemented since COVID-19 encouraged 

more people to move out of city centers [29]. 

In addition to the pandemic, natural disasters and climate change motivate people to 

migrate, either voluntarily or involuntarily. For example, Hurricane Katrina (2005) forced 

an estimated 277,000 Louisiana residents to relocate permanently [30]. Despite the 

recurring risk, some people still choose to return and continue living in a hazardous zone 

due to cultural, historical, and emotional reasons [31] [32]. Managed retreat is an 

emerging topic that discusses how to strategically and equitably mitigate negative 

community impacts caused by natural disasters [33]. Currently, there is no relocation 

planning performed at a regional scale since it requires significant planning efforts with 

community engagement and interagency collaboration. However, managed retreat has the 

potential to significantly change local demographics and thus influence disaster responses 

in the future. 

Simulating Evacuation Traffic Patterns 

As illustrated above, estimating evacuation-related choices can reveal whether people 

decide to evacuate, when they evacuate, where they go when they evacuate, and which 

travel mode they utilize during their evacuation. Each of these works aid in trip 

generation, mode choice, and trip distribution modules in the traditional four-step travel 

demand models. What remains is trip assignment onto road networks so that traffic 

impacts can be assessed. The following sections provide a review of previous traffic 

simulation studies that consider traffic signal timing plans and discuss drivers’ route 

choice behavior in evacuation, both of which affect results from trip assignment. 
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Traffic Signal Timing Plan 

Most studies focused on simulating the impacts of contraflow implemented on interstate 

highways and overlooked the impact of signal timing on local traffic during an 

evacuation [34]. Traffic signal timing plans can be modified when a mandatory 

evacuation order is issued. Traffic signals can be turned off, switched to flashing yellow, 

or manually controlled [35]. Several past studies have investigated and evaluated the 

impacts of various traffic signal timing plans in disaster scenarios. For example, Chen et 

al. [36] compared different signal timing strategies in facilitating evacuation in a no-

notice disaster event by using a simulation model. Kolasani [37] used TransModeler to 

evaluate the evacuation efficiency of a network under two different traffic signal settings: 

flashing yellow/red signals and existing traffic signal plans. Kolasani [37] found that 

having flashing yellow signals on major evacuation routes and flashing red signals on 

minor cross streets is significantly better than maintaining current signal timing plans in 

terms of total delay per trip and average speeds. 

Chang and Edara [38] proposed a reservation-based intersection control algorithm 

(AReBIC) for hurricane evacuation in a connected and autonomous vehicle (CAV) 

environment. The algorithm performed better than the next best optimal signal control on 

all operational measures, which decreased the total delay by 80%. However, there were 

still several practical issues, such as the delay and accuracy of communication. Ren et al. 

[39] proposed an integrated model to determine traffic flows on evacuation routes and 

traffic signal plans at intersections, based on the assumption that evacuation links are 

prepared for exclusive use by evacuees. They validated their model using the Sioux Falls 

network. 

The efforts detailed above were spent in optimizing traffic signal timing plans for better 

evacuation productivity. They illustrate that signal timing plans should be considered and 

improved in evacuation traffic simulations for higher model fidelity. 

Drivers’ Route Choice Behavior 

Route choice is a highly complex driver behavior. Drivers’ route choices are likely to be 

influenced by several factors reflecting the characteristics of the driver, trip, and route. 

Driver attributes encompass personal characteristics such as age, gender, and income. 

Trip attributes may involve trip purpose and the chosen travel mode. Route attributes 

refer to features such as route length, travel speed, and the number of traffic signals [40]. 

Drivers may exhibit unexpected or irrational responses during an evacuation because of 
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fear, panic, and stressful circumstances [1] [41]. Abdelgawad and Abdulhai [42] argued 

that drivers’ stress and aggression would increase and lead to increased driver confusion 

and a higher occurrence of traffic incidents, such as breakdowns and collisions, during 

large-scale evacuations. Route choice behavior models developed in a disaster scenario in 

which drivers’ perceptions of route characteristics and their ability to anticipate 

congestion or traffic conditions are taken into consideration [43]. Akbarzadeh’s [44] 

hurricane evacuation route choice model incorporates four explanatory variables: route 

accessibility, route distance, perceived level of service on the route, and facility class of 

the route. 

Traffic assignment methods in the simulation determine how the path costs are computed 

and how routes are assigned to each driver. Traffic assignment models typically 

incorporate the following factors: travel time, toll charges, travel delay due to congestion, 

travel distance, road condition, road safety, and the number of turns [45]. In traffic 

assignment, the user equilibrium (UE) approach, in which each driver minimizes their 

own travel time, requires knowledge of travel times on all network links, typically 

assumed to come from experience, which may be unrealistic during an evacuation [46]. 

Songchitruksa et al. [47] worked on alternative evacuation strategies using a dynamic 

traffic assignment model. Their study shows that the evacuation lanes on I-10 and US-

290 in Texas can effectively manage high evacuation demand without implementing 

contraflow operations. Edara et al. [48] focused on modeling large-scale hurricane 

evacuations across 10 cities with approximately 2,000 miles of roadways in Virginia. 

They employed PTV Vissim as their microscopic traffic simulation tool. They considered 

lane-changing distance, average standstill distance, safe time headway, and speed 

oscillation as the parameters influencing driver behavior. Lv et al. [49] created a 

simulation model using TransWorld, an artificial transportation system platform, to assess 

how an individual’s decisions regarding route selection affect the time it takes them to 

complete their evacuation. Moriarty et al. [50] assessed the effectiveness of specialized 

evacuation simulation tools like Oak Ridge Evacuation Modeling System (OREMS), 

Dynamic Network Evacuation (DYNEV), and Evacuation Traffic Information System 

(ETIS). They detailed the different characteristics and functionalities of these simulation 

tools. Chen et al. [51] used Simulation of Urban Mobility (SUMO) version 1.1.0 as the 

microscopic traffic simulator for two evacuation case studies in California. 

Drivers’ route choice behavior can be integrated into simulation-based traffic assignment 

models. Bonsall et al. [52] validated drivers’ route choices based on specified origins and 

destinations using VLADIMIR (Variable Legend Assessment Device for Interactive 
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Measurement of Individual Route choice). They found that the VLADIMIR simulator 

could replicate actual route choices with high accuracy. Davis III [53] adopted 

Akbarzadeh’s [44] route choice behavioral model in simulating hurricane evacuation 

traffic. He assessed the model’s accuracy via TransModeler and compared the simulation 

with a route choice component against one using a shortest path approach. Dai et al. [54] 

built their simulation with SUMO to study driver route choice behavior in a connected 

vehicle environment and analyze how drivers’ response to real-time traffic information 

could affect the performance of traffic system. Hu et al. [55] investigated dynamic route 

choice behavior in a mixed traffic flow condition with their simulation framework built in 

DynaTAIWAN. They found that the simulation-based dynamic traffic assignment 

procedure is capable of simulating multiple behavior rules and physical vehicle classes. 
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Objective 

This project focused on testing the developed Hurricane Evacuation Modeling Package 

(HEMP) in a storm scenario different from those on which the models were based, thus 

observing and improving the performance of HEMP. The objectives of this project 

included: 

• Improving and validating the prediction accuracy of the developed package 

• Improving the package’s fitness for actual emergency operations in Louisiana 

• Improving the package’s computational speed 

• Exploring how to further enhance the package’s capabilities 
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Scope 

Figure 2 shows the scope and workflow of the entire project, with anticipation that the 

computer package could be utilized in real-time in the future. In this study, the project 

team assumed Hurricane Ida (2021) is an approaching hurricane, so that it can be 

examined and determined if and what additional information is needed to improve 

prediction accuracy. 

For the evacuation behavior simulation: 

• Step 1.1: Relevant input data, such as socio-demographics and storm tracks, were 

collected from different sources, while evacuation-related choice models were 

prepared for application and transfer.  

• Step 1.2: Synthetic populations were generated by year from 2013 to 2022. The 

socio-demographic information needed as inputs for this project are not publicly 

available before 2013. Additionally, 2022 is the latest year that the needed socio-

demographic information is available during the project time. This study tested 

applying the models on 1% and 10% synthetic populations. The team found that 

the predicted evacuation patterns were nearly the same after applying the 

corresponding weights. 

• Step 1.3: Models were applied and transferred in a near-real-time fashion on the 

generated synthetic populations to simulate choices made by households under 

real world conditions.  

• Step 1.4: The simulated choice behavioral results were compared with survey 

responses collected after Hurricane Ida (2021). An important assumption of the 

current study is that survey response samples are sufficient to reflect the choice 

patterns of the entire population. 

For the evacuation traffic simulation: 

• Step 2.1: Relevant input data, such as the road network and traffic signal timing 

plan, were collected to build the traffic simulation environment, while drivers’ 

route choice behavior parameters were set up in the simulation setting. 

• Step 2.2: Traffic simulations were run in a near-real-time fashion with time-

dependent Origin-Destination (OD) matrices generated from the evacuation-
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behavior simulation process to understand traffic patterns on the virtual road 

network. 

• Step 2.3: Sensors were created on the virtual road network as counters to record 

traffic volumes on certain road segments in the simulation. The virtual traffic 

volume was compared with traffic counts collected by loop detectors to 

investigate the performance of the created simulation environment. 

Figure 2. Scope and workflow of the project 

 

Note: Dark blue shows events in a time sequence in the real world. Light blue represents the work to create a digital 

twin supporting future storm responses. 
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Methodology 

This section explains how evacuation choice simulation and evacuation traffic simulation 

were completed in this study. Hurricane Ida (2021) was utilized as the case to illustrate 

the study approach. 

Simulating Evacuation-Related Choices 

Data Overview 

As shown in Figure 1, Hurricane Ida made landfall in southeast Louisiana. The New 

Orleans metropolitan area in this region is heavily populated and is thus likely to be 

affected by heavy traffic congestion during hurricane evacuation. Therefore, the study 

area for the current research included four coastal parishes in the metropolitan area: 

Jefferson, Orleans, Plaquemines, and St. Bernard. 

Synthetic populations needed to be generated for the study area (i.e., Step 1.2 in Figure 2) 

for choice behavior simulation (i.e., Step 1.3 in Figure 2). Two datasets were needed to 

complete the generation: disaggregated household seeds (e.g., number of persons 

associated with a household) and marginal household statistics (e.g., number of 

households by household size in a geographic zone). Iterative Proportional Updating 

(IPU), one of the typical approaches applied in generating synthetic populations, was 

applied in this study [56]. 

Figure 3 presents data sources for the required data along with their availability by year. 

First, the Public Use Microdata Sample (PUMS) provided the following household seed 

data for synthetic population generation in this study: number of persons associated with 

a household record (NP) and number of vehicles available to a household record (VEH) 

[57]. The following data were also collected from the PUMS for behavioral model 

application in this study: household income (HINCP) and residential years (MV). 

Although the PUMS data is available as far back as 1996, the dataset does not include a 

unique ID for each Public Use Microdata Area (PUMA) until 2005.  

Second, the American Community Survey (ACS) provided the following corresponding 

household marginal data for synthetic population generation in this study: household size 

and household vehicle ownership [58]. These data are available at the census tract level 
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as far back as 2010 (see ACS Table B08201) but are available at the block group level 

only from 2013 onward (see ACS Table B11016 and Table B25044). Data at the block 

group level was preferred in this study to evaluate traffic at a more disaggregated scale. 

To fulfill this objective, decennial data was tested to serve as an alternative to provide 

household marginals at the block group level, but such data are only available for 

particular years (see Decennial Table H013 and Table H044) [59]. Ideally, household data 

from the same year as, or as close as possible to, the storm year should be collected and 

used in simulation. Overall, as of July 2024, existing census data at the block group level 

only allowed the simulation of evacuation behavior from 2013 to 2022. 

Figure 3. Data sources and availability for creating synthetic populations 

 
Note: Dashed straight lines indicate that datasets exist for consecutive years in between. Years and dashed 

lines colored in grey means certain data required in this study are missing from a corresponding dataset. 

Table 2 is a summary of demographics and household marginals for the study area in 

particular years. The most significant change is the total number of people and 

households in the region, which declined approximately 25% between 2000 and 2010. 

However, these numbers increased approximately 10-14% between 2010 and 2013 and 

remained almost the same in 2021. Average household vehicle ownership increased 

approximately 12% between 2000 and 2010. 

Examining the local demographics with a more disaggregated view, the number of census 

block groups shrank in the study region (i.e., 918, 902, and 842 in 2000, 2010/2013, and 

2020/2021, respectively) when shifting the census zone boundaries. Table 3 visualizes the 

spatial distribution of household demographics over the years. Notable changes that can 

be observed from the map include:  

1. Population density increased along I-10 in Jefferson Parish and New Orleans East  
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2. Average household size and vehicle ownership both grew in Uptown and Mid-

City New Orleans from year to year.  

All of the observations indicate that local demographics have changed over the past 

several decades. 
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Table 2. Demographics and household marginals for the study area 

Year 2000 2010 2013 2021 

Statistics All 

By block group 

All 

By block group 

All 

By block group 

All 

By block group 

Range Mean 
Std 

Dev 
Range Mean 

Std 

Dev 
Range Mean 

Std 

Dev 
Range Mean 

Std 

Dev 

Total 

populations 
1,034,126 

[0, 

6634] 
1127 728 776,753 

[0, 

3929] 
926 560 852,725 

[0, 

3905] 
945 588 890,733 

[0, 

3571] 
1058 573 

Total 

households 
398,629 

[0, 

2464] 
434 265 297,532 

[0, 

1276] 
369 214 337,978 

[0, 

1301] 
375 216 355,051 

[0, 

1197] 
422 212 

Proportion of households by size  

1 0.29 [0, 1] 0.29 0.14 0.24 
[0, 

0.81] 
0.31 0.12 0.28 

[0, 

0.92] 
0.34 0.16 0.34 [0, 1] 0.39 0.18 

2 0.29 [0, 1] 0.29 0.07 0.24 
[0.07, 

1] 
0.31 0.06 0.26 [0, 1] 0.31 0.12 0.27 [0, 83] 0.31 0.13 

3 0.18 
[0, 

0.34] 
0.17 0.05 0.12 

[0, 

0.35] 
0.17 0.05 0.14 

[0, 

0.80] 
0.16 0.10 0.13 

[0, 

0.71] 
0.14 0.10 

4+ 0.24 [0, 1] 0.24 0.11 0.15 
[0, 

0.59] 
0.22 0.09 0.16 [0, 1] 0.19 0.12 0.15 

[0, 

0.68] 
0.16 0.13 

Average 2.59 
[0, 

173] 
2.83 5.83 2.61 

[1.33, 

110.6] 
2.65 3.67 2.52 

[1.21, 

148.4] 
2.70 4.94 2.51 

[1, 

14.36] 
2.55 0.92 

Proportion of households by vehicle ownership 

0 0.18 [0, 1] 0.20 0.19 0.09 (na) (na) (na) 0.11 [0, 1] 0.15 0.16 0.11 
[0, 

0.88] 
0.13 0.15 

1 0.41 [0, 1] 0.40 0.12 0.30 (na) (na) (na) 0.36 [0, 1] 0.42 0.15 0.39 
[0.03, 

1] 
0.43 0.17 

2 0.32 [0, 1] 0.30 0.15 0.26 (na) (na) (na) 0.28 
[0, 

0.80] 
0.31 0.16 0.29 

[0, 

0.82] 
0.32 0.16 

3+ 0.09 [0, 1] 0.09 0.08 0.10 (na) (na) (na) 0.10 [0, 1] 0.12 0.11 0.11 
[0, 

0.71] 
0.12 0.11 

Average 1.33 [0, 3] 1.28 0.44 1.50 (na) (na) (na) 1.45 [0, 3] 1.40 0.42 1.45 
[0.12, 

2.58] 
1.42 0.41 

Note: ‘na’ means not available. 
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Table 3. Spatial distribution of household demographics across years 

 

2000 2013 2021 

1 

   

2 

   

3 

   

Note: [1] Population density (per land square miles). [2] Average household size. [3] Average household vehicle ownership.  

Please refer to the following link for the names of New Orleans neighborhoods: www.neworleans.com/plan/neighborhoods/  

http://www.neworleans.com/plan/neighborhoods/
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Model Application and Transfer 

A focus of this study was to evaluate the transferability of models estimated beforehand 

and how the prediction results could be improved without collecting new survey data or 

estimating models for a new storm scenario (i.e., Step 1.3 in Figure 2). For the current 

study, Hurricane Ida was treated as an approaching storm; the survey responses collected 

after Hurricane Ida were used as a means for comparison (i.e., Step 1.4 in Figure 2). Note 

that such data does not exist before the storm landfall in an actual situation.  

The following updates were made to align demographic years and geographic units. First, 

synthetic populations were generated with demographic files for each year, as described 

in the previous section. Second, origin and destination characteristics were collected for 

each year using the geographic unit required by each behavioral model. For example, 

data at the Zip Code Tabulation Area (ZCTA) level, such as the accessibility measures, 

are required as an input describing origin characteristics in the mode and accommodation 

choice model; data at the metropolitan/micropolitan level, such as the population in a 

destination, are required as an input describing destination characteristics in the 

destination choice model. This data was provided by the American Community Survey 

(ACS) [58]. Third, accommodation characteristics, such as hotel daily rate and occupancy 

rate, were collected for each year using the geographic unit required by each behavioral 

model. Data sources included the County Business Pattern [60] and Statista [61]. A 

geographic unit crosswalk file was created using the Spatial Join operation (i.e., “largest 

overlap”) in ArcGIS to align the various geographic units used in the process. Finally, 

because the models include income-related variables, the inflation rate is considered and 

accounted for in a way that updates scale parameters for model transferability. With all of 

these data preparations, this software package can be used to support evacuation 

operation drills with storms that occurred from 2013 to 2022. 

The Discussion of Results section provides further detail on how the evacuation choice 

simulation work in TransCAD could be further improved by observing the simulation 

results. 

Simulating Evacuation Traffic Patterns 

The evacuation demand estimation output from TransCAD is a series of time-dependent 

OD matrices. The matrix outputs from TransCAD serve as the input for evacuation traffic 

simulation in TransModeler. This study continued with Hurricane Ida (2021) as the case 
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and focused on the 72 hour period prior to storm landfall as the traffic simulation period. 

The project team improved the simulation environment, including road network 

improvement and signal timing plan integration, and created a set of simulation scenarios 

to identify the group of parameters that best reflected drivers’ route choice behavior 

during the Hurricane Ida evacuation. 

Figure 4(a) shows the simulation road network with a zoom-in view on the New Orleans 

metropolitan area, which includes primary local roads and interstate highways. Figure 

4(b) shows the entire simulation road networks with a regional view. The blue dots 

represent the 1,143 trip origins that are within the New Orleans area. The red location 

marks represent the 14 major hurricane evacuation destinations that are within and 

outside Louisiana. 

Figure 4. Road networks in the study 

  
(a) New Orleans Networks  

(Zoom-In View) 

(b) Regional Networks  

(Zoom-Out View) 

Road Network 

In TransModeler, traffic network cleanup consists of checking the simulation database for 

errors and making corrections based on previous work in the Hurricane Evacuation 

Modeling Package (HEMP). This process includes identifying and correcting lane 

connection issues, roadway geometry issues, intersection geometry issues, etc. Figure 5 is 

a summary of improvements made during the project time by running the “Error 

Checking–Check Network” in TransModeler. The remaining warnings about elevations 

and detectors will not affect simulation outputs in this study according to the 

TransModeler user manual. The remaining issue of missing lane connections could not be 

further corrected after making multiple attempts. 
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Figure 5. Road network improvements 

 
(a) Before network improvements 

 
(b) After network improvements 

Figure 6(a), (c), and (e) provide examples that illustrate three typical issues. Figure 6(b), 

(d), and (f) show how these issues were resolved. These corrections ensure a more 

accurate representation of the physical road network. The simulation accuracy and 

productivity are expected to improve due to the updates.  
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Figure 6. Road network issues and corrections 

  
(a) Missing Lane Connector (b) Added Lane Connector 

  
(c) Road Geometry Issue (d) Fixed Road Geometry Issue 

  
(e) Intersection Geometry Issue (f) Fixed Intersection Geometry Issue 

Signal Timing Plan 

Traffic signal timing plan information was obtained from various sources, ranging from 

hard copies of traffic signal inventory plans from a local district of the Louisiana 

Department of Transportation and Development (DOTD), to Synchro™ network timing 

plans in Comma Separated Value (.csv) format from two local transportation consulting 

agencies, Neel-Schaffer and Urban Systems Inc. DOTD provided traffic signal plans for 

approximately 299 intersections in the New Orleans area. Of these sites, approximately 
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253 intersections had complete and valid traffic signal timing plans, while the remainder 

were empty, updated, or unable to be used due to construction. Approximately 150 

Synchro-coded timing plans along six different stretches in the New Orleans area were 

obtained from Neel-Schaffer and Urban Systems Inc. Therefore, there were a total of 403 

valid signal timing plans. However, there were 525 major intersections on the road 

network created in TransModeler, which means 122 intersections along the major 

evacuation routes had missing signal timing information in the latest version [37]. 

TransModeler allows users to code six built-in intersection control types: None, Stop or 

Yield, Pretimed (Sequential Phasing), Pretimed (Concurrent Phasing), Pretimed Signal 

Group, and Traffic Actuated. Therefore, all of the intersections must be categorized and 

coded with one of the six available options. TransModeler also allows traffic signals at an 

intersection to switch between different control plans based on the time of day. For 

instance, traffic signal plans operate as Pretimed during peak hours and Traffic Actuated 

during off-peak periods at some intersections. The 122 intersections with missing signal 

timing plans are manually coded as having Pretimed (Concurrent Phasing) signals based 

on observed traffic volume and nearby intersection setup. After assigning proper 

intersection controls, the final signal timing plan file created for this simulation work 

included 339 Pretimed signals and 186 Actuated signals [2] [37].  

Additionally, some of the traffic signal timing plans had internal errors that needed to be 

corrected. Errors included no signal assignments, invalid plans, incorrect signal state 

assignments, etc. All of the errors were corrected before running the simulation. 

Route Choice Scenario 

As discussed in the Literature Review section, drivers’ route choice behavior is 

influenced by a wide range of factors. This project continued to investigate how to 

integrate those factors into evacuation traffic simulation and how to set up those factor 

values to obtain the simulated traffic best fit observed in reality. TransModeler is capable 

of simulating route choice by using either the deterministic/stochastic shortest path-based 

models or the probabilistic logit-based model. Additionally, there are parameters that can 

determine when drivers will consider new paths when they are en route. Various route 

choice parameters can be adjusted depending on the selected route choice method [62]. 

Table 4 shows a combination of 20 route choice testing scenarios in this study, which are 

defined by the minimize item, the shortest path model, and the percentage of informed 

drivers. The route choice method in TransModeler can be set up in the Project Settings, 
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where various route choice parameters can be applied depending on the selected route 

choice method. 

Table 4. Route choice testing scenarios 

Scenario Minimize item Shortest path model %Informed drivers 

1~5 Travel time Deterministic 10%, 30%, 50%, 70% and 90% 

6~10 Travel time Stochastic 10%, 30%, 50%, 70% and 90% 

11~15 Generalized cost Deterministic 10%, 30%, 50%, 70% and 90% 

16~20 Generalized cost Stochastic 10%, 30%, 50%, 70% and 90% 

Minimize items. The minimize item option allows users to select whether to minimize 

travel time or generalized cost. If generalized cost is selected, path costs can be defined 

by travel times, turning delays, tolls, and other user-defined variables, which allows more 

factors to be considered in simulating drivers’ route choice [43] [63]. The perception of 

these costs can also vary from driver to driver and depend on a variety of driver 

characteristics, including access to traveler information. One or more driver groups can 

be defined in the route choice model parameter setting so that route choice behavior can 

vary among drivers. 

Path costs can also be defined by roadway classification, which is a significant factor in 

influencing route choice during a hurricane evacuation. The cost coefficient value for 

roadway classification is derived based on the model estimated by Akbarzadeh [44]. The 

negative coefficient means interstate highways have lower path costs, which should be 

preferred by drivers in their evacuation route choice. It is also notable that generalized 

cost only works with the shortest path models, not in the probabilistic logit-based models. 

Shortest path models. TransModeler is a path-based simulation tool, which can generate 

a set of alternative paths for a vehicle or driver based on predetermined inputs or route 

assignment models [62]. Drivers traveling between the same origin-destination (OD) pair 

are not likely to follow the same path. Additionally, drivers may not choose the path with 

the minimum cost. There are two shortest path-based route assignment models: 

deterministic shortest path and stochastic shortest path [64]. 

The deterministic shortest path is the simplest method; all vehicles follow the absolute 

shortest path. Based on past research, this method should only be used on an 

experimental basis or for small networks, where there is little or no variation in the 

available paths drivers may choose between any given origin-destination pair [65]. This 

traffic assignment model is included here for testing purposes [64]. The stochastic 

shortest path method is like the deterministic shortest path in that all vehicles choose the 
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shortest path. However, path costs are randomized for each individual vehicle to account 

for variations in perception and/or choice behavior. As a result, there will be multiple 

shortest paths for a given origin-destination pair [63] [65]. 

Informed drivers. Informed drivers refer to the percentage of drivers in the group that 

have access to updated travel time information, such as traffic congestion, crashes, and 

roadwork. This information helps drivers choose the fastest or least congested route. 

Based on a 2020 Statista survey [66], not all smartphone users utilize navigation apps on 

their smartphone during their travels. Additionally, some drivers do not have a 

smartphone or an in-vehicle navigation system. All of these facts mean that the 

percentage of informed drivers is an unknown value that needs to be tested. This 

parameter must also be tested in the future as the percentage of autonomous vehicles 

increases. 

Creating Virtual Sensors for Traffic Count Comparison 

Only a handful of loop detectors provide continuous traffic observations in Louisiana, 

and some of them have missing traffic count data for the study period of August 2021. 

This study was only able to extract traffic count data from four loop detectors to serve as 

the ground-truth data for simulation comparisons. The four loop detectors are 015-NB (I-

55N), 067-EB (I-10E), 063-WB (I-10W), 008-WB (US-90W), as shown in Figure 7. All 

of the routes are major hurricane evacuation routes, so the comparison was of great value 

for this study. 

The hourly traffic volume in both directions can be obtained from those loop detectors. 

The landfall time of Hurricane Ida was 11:55am on Sunday, August 29, 2021. The project 

team found that traffic count data was not provided after 6:00am on August 29. 

Therefore, this study collected and used traffic count data from 6:00am on Thursday, 

August 26 until 6:00am on Sunday, August 29; this was the 72 hour period used for 

traffic comparison. The average hourly traffic volume in the 72 hour period for the four 

locations was 851 on I-55N, 1446 on I-10E, 1645 on I-10W, and 769 on US-90W. Virtual 

sensors needed to be created and placed on the simulation road network in TransModeler 

to match the loop detector locations for simulation accuracy evaluation. After each 

simulation run, sensor data were saved in “detector.bin” files. Embedded code was 

written with the GIS Developer’s Kit (GISDK) to process the sensor data automatically 

and generate a report to compare with the traffic counts collected from loop detectors. 

The corresponding sensor IDs in TransModeler were 2682, 2685, 2880, and 2882. 
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Figure 7. Location of loop detectors 

 
 

(a) Location: 015-NB (I-55N) (b) Location: 067-EB (I-10E) 

  

(c) Location: 063-WB (I-10W) (d) Location: 008-WB (US-90W) 

Simulation Experiment 

The evacuation choice simulation in TransCAD generated 12 Origin-Destination (OD) 

matrices, which served as the input for traffic simulation work in TransModeler. The 12 

OD matrices reflected evacuation traffic patterns over the 72 hour period prior to 

Hurricane Ida’s landfall. One cell in an OD matrix represented the demand, or traffic 

volume, between an OD pair in a time period of 6 hours. However, TransModeler 

requires time-dependent OD demand in an hourly interval. Therefore, GISDK code 

written in TransModeler distributed the 6 hour demands from above to each hour using a 

simple curve fitting method [2]. TransModeler then ran the entire 72 simulation hours 

using the defined road networks, a created traffic signal timing plan, and a selected set of 

route choice parameters. 

It should be noted that the OD matrices only record evacuation traffic. However, not all 

people living in the New Orleans metropolitan area evacuated; they may have traveled 

for other purposes, such as stocking food for storm preparations before storm landfall. 
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Therefore, it made sense to consider background traffic together with the evacuation 

simulation results in comparison with the traffic count data collected from loop detectors. 

In this study, background traffic data for the same 72 hour interval in the previous week 

was used as a proxy; background traffic data was collected from the four loop detectors 

from 6:00am on Thursday, August 19 until 6:00am on Sunday, August 22. In the next 

stage, near-real-time traffic information could be connected to the computer package to 

serve as an input source. 

This study used a variety of statistics in comparing the simulated traffic counts against 

the observed traffic counts. This study used Mean Squared Error (MSE) and scenario 

ranking to assist in result discussions. Additionally, both hourly and 6 hour traffic 

distributions were evaluated to identify the best set of drivers’ route choice parameters. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 

where, 

𝑦𝑖 is the observed traffic flow collected from loop detectors, 

𝑝𝑖 is the predicted traffic flow in TransModeler with background traffic considered, and 

𝑛 is 72 in the hourly comparison and becomes 12 in the 6 hour comparison. 
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Discussion of Results 

All of the behavioral models were compiled with required input datasets as one integrated 

software package in TransCAD and TransModeler, which allows factors such as storm 

intensity, storm position and path, time of day, land use, population characteristics, 

network conditions, and management operation decisions to play a role in simulating 

evacuation behavior and traffic [2]. The matrix outputs from TransCAD served as the 

inputs for evacuation traffic simulation in TransModeler. User interfaces were developed 

and integrated in the software package so that even those with little knowledge of 

simulation tools can run the program. The input needed from users is solely related to 

evacuation management operation decisions, such as when and where to issue an 

evacuation order. 

The simulation was run on a high-performance device with the following specifications: 

processor (Intel (R) Core (TM) i9-14900KF 3.20 GHz), RAM (64.0 GB), GPU (NVIDIA 

GeForce RTX 4090), and system (64-bit operating system, x64-based processor). First, 

the computational speed of HEMP was significantly improved in TransCAD 9.0 by 

optimizing the structure of data and code, reducing overhead running time (e.g., 

generating a full set of synthetic populations ahead of time), and simplifying calculation 

steps. After these changes, simulating the evacuation choices of 1% of the populations in 

TransCAD took only five minutes. If 10% of the populations were simulated, the running 

time increased to 25 minutes. This study found no difference in comparing the results 

generated from the two scenarios (i.e., 1% vs 10%) since weights were properly applied. 

Second, the computational speed of HEMP was improved by using TransModeler 7.0 

instead of TransModeler 5.0 and setting the macroscopic vehicle state step size to the 

maximum value of 300s and the vehicle position step size to the maximum value of 30s. 

With all of these updates, simulating traffic patterns for the 72 hour period took 

approximately 110 minutes, including the time to generate simulation summary reports 

and graphics. Overall, the amount of time to complete an entire HEMP simulation cycle 

was approximately 2 hours, which was much improved from the previous version, which 

took 4 hours. The simulation time could possibly be further reduced on higher-

performing devices. 
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Predicting Hurricane Evacuation-Related Behavior 

This section focuses on improving the evacuation demand estimation outputs from 

TransCAD. The simulation replicated management decisions made during Hurricane Ida 

to best reflect the real world conditions. Table 5 shows the results of the major simulation 

tests that were conducted. Results were improved from one simulation to the next on its 

right. 
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Table 5. Simulation test results 

 

Survey 

responses 

[13] 

Simulation (with inflation 

accounted) 

(Baseline) 

Simulation (with lognormal 

update: 1) 

Simulation (with lognormal 

update: 2) 

Simulation (update 

destination attributes) 

Evacuate/Stay      

Chose to evacuate 49% 52% (+3%) 47% (-2%) 44% (-5%) 44% (-5%) 

Evacuation timing      

3 days before landfall 20%  10% (-10%) 13% (-7%) 16% (-4%) 16% (-4%) 

2 days before landfall 27% 18% (-9%) 24% (-3%) 28% (1%) 28% (1%) 

1 day before landfall 40%  52% (+12%) 49% (+9%) 44% (4%) 44% (4%) 

On the day of landfall 13%  20% (+7%) 14% (+1%) 12% (-1%) 12% (-1%) 

Mode choice (*)      

Own vehicle 89% (-) (-) 90% (+1%) 90% (+1%) 

Ride with others 8% (-) (-) 6% (-2%) 6% (-2%) 

Transit 1% (-) (-) 2% (+1%) 2% (+1%) 

Other modes 2% (-) (-) 2% (0%) 2% (0%) 

Accommodation choice      

Friends or relatives 50%  (-) (-) 56% (+6%) 56% (+6%) 

Hotels/motels 41% (-) (-) 36% (-5%) 36% (-5%) 

Public shelters 2%  (-) (-) 2% (0%) 2% (0%) 

Others 7%  (-) (-) 6% (-1%) 6% (-1%) 

Destination choice      

New Orleans and Nearby 12% (-) (-) 8% (-4%) 4% (-8%) 

Central/Northern LA  4% (-) (-) 12% (+8%) 8% (+4%) 

Baton Rouge, LA 6% (-) (-) 13% (+7%) 8% (+2%) 

Lafayette, LA 2% (-) (-) 6% (+4%) 4% (+2%) 

I-10 West (e.g., Lake Charles 

and Houston) 

25% 
(-) (-) 24% (-1%) 30% (+5%) 

Other places/states 51% (-) (-) 37% (-14%) 46% (-5%) 

Note: “(NUMBER%)” presents the difference in comparing the survey responses. “(*)” the survey data was the average based on responses collected in previous hurricanes to serve as 

a comparison. “(-)” results are not reported due to imprecise outputs from models applied in previous steps. Shaded cells indicate that the absolute difference is over 5%. 
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Improve Predictions of Evacuation Rate and Departure Timing  

The next two sections explain how the simulation results shown in Table 5 were 

improved from the baseline results, shown in the third column from the left. Evacuation 

rate and departure timing prediction needed to be studied first. Otherwise, prediction 

errors would propagate as additional models are applied. This study chose a ±5% 

difference from the survey response distribution pattern as the criterion for satisfactory 

model application/transfer. 

First, updating alternative specific constants in the sequential logit model estimated by 

Gudishala and Wilmot [5] did not help improve the prediction of evacuate/stay and 

departure timing choices, which was similar to the findings of Fu et al. [25]. Results were 

not presented in Table 4 due to reduced model transfer performance. 

Second, the major error source was the distance between the study area and the 

approaching storm, which was transformed by a lognormal distribution in the model 

estimated by Gudishala and Wilmot [5]. This finding is also similar to that of Fu et al. 

[25]. After looking into the issue, it was found that the lognormal distribution parameters, 

mu and sigma, should be both time-dependent and distance-sensitive. The following text 

explains how to calibrate lognormal distribution parameters based on the characteristics 

of an approaching storm for higher prediction accuracy. 

Figure 8(a) shows the proportion of people who evacuated by day based on observations 

from surveys (see Table 1). Hurricane Katrina was used for comparison and approach 

illustration purposes. More households evacuated three days before the storm landfall and 

on the day of storm landfall during Ida, while more households evacuated one day before 

storm landfall during Katrina. Clearly, two different lognormal curves should fit the two 

storms. Therefore, the parameters of lognormal distributions needed to be updated for 

each case. The fourth column from the left (i.e., “Simulation (with lognormal update: 1)”) 

in Table 5 shows the simulation results by using the parameters marked in Figure 8(a) for 

Ida. Note that the simulation results were much improved compared to the baseline but 

were not sufficient to be within a ±5% difference of the survey responses. 

Further investigation showed that Hurricane Katrina was approximately 350 miles away 

from New Orleans one day before its landfall. However, Hurricane Ida was 550 miles 

away from New Orleans one day before its landfall. This observation made aligning the 

two storms in Figure 8(a) on a same distance scale (i.e., the second X-axis) problematic. 

Figure 8(b) illustrates how the lognormal distribution would be different when the 
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distance scale is updated for Hurricane Ida. The two black dashed lines in Figure 8(a) and 

Figure 8(b) use the same lognormal parameters to assist in the comparison. Clearly, the 

lognormal distribution needs to be shifted by updating the distribution parameters mu and 

sigma. The fifth column from the left (i.e., “Simulation (with lognormal update: 2)”) in 

Table 5 shows the simulation results by using the parameters marked for the dotted line in 

Figure 8(b). The simulation results were much improved over “Simulation (with 

lognormal update: 1)” and met the ±5% difference criterion. 

This finding illustrates that evacuation rate and departure timing should be predicted in 

real time, using the storm forecast as an input. The location and scale parameters in the 

lognormal distribution are both time- and distance-dependent, which can be updated 

based on real-time storm activity forecast feeds. This also explains why and how two 

different sets of location and scale parameters were applied in the lognormal distribution 

in two previous studies for model performance improvements (i.e., (6, 0.6) in [3] and (6, 

0.1) in [26]). 

Figure 8. Evacuation proportion and lognormal distribution 

(a) For two hurricanes (i.e., lognormal update: 1) 
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(b) For Hurricane Ida (i.e., lognormal update: 2) 

 

Improve Evacuation Logistics Prediction 

In Table 5, the accommodation choice model overestimated the proportion of households 

choosing friends’ or relatives’ homes as their accommodation; the error rate is 6%. The 

destination choice model overestimated the proportion of households choosing Baton 

Rouge and Central/North Louisiana (e.g., Alexandria, Shreveport, and Monroe) as their 

destinations, while it underestimated those choosing other out-of-state places as their 

destinations. The over-/under-estimations could be due to Hurricane Ida initially being 

predicted to hit the Baton Rouge area directly, which made the Baton Rouge area an 

unsafe destination. Hurricane Ida also induced widespread and long-duration power 

outages in Louisiana [67]. Both conditions could make Baton Rouge and other in-state 

destinations less favorable as evacuation destinations. This observation reveals the 

importance of updating the risk perception factor values, such as DANGER, for the 

destination choice model and that such factor value updates should take the preliminary 

hurricane track into consideration, rather than relying only on the best hurricane track. As 

a test, this research marked all the destinations in Louisiana as at risk (i.e., DANGER = 

1). Such changes improved the simulation results, as shown in the last column in Table 5. 

Though the number of people choosing to stay in New Orleans and nearby places was 

underestimated, this may not be a negative for evacuation management, since traffic 

impacts on interstate routes would not be underestimated. 
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Predicting Evacuation Traffic Patterns 

As shown in Table 4, 20 scenarios were tested to look for parameters that would allow the 

model to best match the traffic flow observed during Hurricane Ida. The simulation 

ranges from Thursday, August 26, 2021 at 6:00am until Sunday, August 29, 2021 at 

6:00am.  

Figure 9 and Figure 10, along with Table 6 andTable 7, include the following 

abbreviations for simplicity:  

1. T: Minimize Travel Time 

2. G: Minimize Generalized Cost 

3. D: Deterministic Shortest Path Model 

4. S: Stochastic Shortest Path Model.  

The percentage values refer to the percentage of informed drivers (InfDr). For example, 

TD10% represents the scenario of minimizing travel time in the deterministic shortest 

path model with 10% informed drivers. 

Figure 9 shows hourly traffic flow comparison between loop detectors and simulation 

runs for all of the testing scenarios. The charts in Figure 9 show multiple peaks and 

troughs, indicating a cyclical pattern of traffic volumes. Peaks occur near 10, 35, and 55 

hours, which correspond to morning hours. Troughs occur near 20, 45, and 70 hours, 

which correspond to nighttime hours.  

It should be noted that traffic volumes are significantly higher than background traffic, 

which is the traffic volume collected from the previous week, after 48 hours. This may 

indicate that more traffic is for evacuation purposes after 48 hours, or 22 hours before 

storm landfall. This observation is especially true for routes I-55N, I-10E, and I-10W. 

There is less traffic on US-90W in the last 15 hours, perhaps because US-90W is closer to 

the coastline and therefore a higher travel risk.  

It should also be noted that traffic counts from the loop detector are very close to the 

background traffic flow in the first 30 hours, or 40 hours before storm landfall. This 

indicates that evacuation traffic may only contribute marginally to the total traffic in the 

first 30 hours of the simulation. All of the observations match previous findings that 

people are less likely to evacuate during nighttime hours and that more people would like 

to evacuate one day before storm landfall. 
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Figure 9. Comparison of hourly traffic volumes 

  
(a) 015-NB(I-55N) (b) 067-EB(I-10E) 

 
 

(c) 063-WB(I-10W) (d) 008-WB(US-90W) 

Figure 10 shows traffic volume summarized by 6 hour time intervals to assist in visual 

observations. While the traffic patterns are similar to one another in different scenarios, 

the variations among scenarios are not negligible. For example, traffic volumes are 

especially high on I-10W (063-WB) in the scenario of minimizing generalized cost in the 

deterministic shortest path model with only 10% informed drivers (i.e., GD10%). This 

indicates that I-10W would attract more evacuation traffic when only a small percentage 

of drivers are aware of the traffic situation and prefer taking the shortest path. Another 

example is that the simulated traffic patterns on US-90W seem not to change from 

scenario to scenario since many lines overlap with one another. 

Figure 9 and Figure 10 both show that the current simulation underestimated traffic 

volume on I-55N and I-10W for the day before storm landfall. This may be because the 

study area covers only four parishes in the New Orleans metropolitan area, but people 

living outside of those four parishes, such as those living in Hammond, may also 

evacuate during the storm. 
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Figure 10. Comparison of traffic volumes summarized by 6 hour intervals 

  
(a) 015-NB(I-55N) (b) 067-EB(I-10E) 

  
(c) 063-WB(I-10W) (d) 008-WB(US-90W) 

The following two tables present the results of evaluating which scenario provides the 

best fit using the mean squared error (MSE) as the evaluation criterion. A smaller MSE 

usually means a better match between the observed and simulated traffic volume. The 

MSE values from various scenarios were ranked for each location. A smaller rank number 

indicates that the simulated results are closer to the actual observations within 72 hours of 

the hurricane landfall. 

As shown in Table 6, the lowest MSE appears in the TS30%, TS50%, or TS70% 

scenarios. This indicates that minimizing travel time in the stochastic shortest path model 

with a medium number of informed drivers would provide the best fit. In contrast, the 

highest MSE appears in the GS90%, GD90%, GD10%, or GS70% scenarios. This means 

that minimizing generalized cost with either the greatest or least amount of informed 

drivers would provide the worst fit. 

It is also illuminating to consider each route choice scenario factor individually. When 

considering only the minimized item, travel time outperforms generalized cost (i.e., TD > 

GD, TS > GS). When considering only the shortest path model, the deterministic model 
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outperforms the stochastic model (i.e., GD > GS, TD > TS). When considering only the 

percentage of informed drivers, 70% and 50% outperform the other values. 

Table 6. Hourly traffic volume analysis 

Table 7 and Figure 10 are related, as they both present results by 6 hour intervals. Here 

the MSE values are greater than those presented in Table 6 because the time duration 

increases in each successive interval. As shown, the lowest MSE appears in the GD70%, 

TS50%, and TS10% scenarios. Although minimizing travel time in the stochastic shortest 

path model still provides the best fit in most cases, the percentage of informed drivers 

that provide the best fit changes. Additionally, minimizing generalized cost in the 

deterministic shortest path model with 70% of informed drivers performs well in one 

case. In contrast, the highest MSE consistently appears in the GS90% scenario. This 

indicates that minimizing generalized cost with the greatest number of informed drivers 

would provide the worst fit, which coincides with what was observed from Table 6. 

The following observations can be made when considering one route choice scenario 

factor at a time. When considering only the minimized item, travel time outperforms 

generalized cost (i.e., TS > GS). When considering only the shortest path model, the 

 

Loc ID 015-NB 067-EB 063-WB 008-WB 

Route I-55N I-10E I-10W US-90W 

Inf Dr MSE Rank MSE Rank MSE Rank MSE Rank 

TD 

10% 351864 15 395135 5 628122 2 66104 4 

30% 292437 3 390594 3 677512 3 66228 15 

50% 302483 7 393413 4 724561 10 66113 7 

70% 296722 5 401873 6 751198 12 66110 6 

90% 296403 4 376055 2 690424 5 66106 5 

TS 

10% 321057 14 434421 12 736417 11 66102 3 

30% 314896 12 403352 7 773127 18 66062 1 

50% 316434 13 363054 1 466614 1 66160 12 

70% 282069 1 431492 11 705100 8 66145 9 

90% 306960 9 406977 9 789399 19 66139 8 

GD 

10% 301775 6 404728 8 791501 20 66093 2 

30% 314228 11 446406 13 694361 7 66180 14 

50% 305664 8 413470 10 716242 9 66156 11 

70% 291457 2 460034 16 679247 4 66169 13 

90% 310082 10 500144 20 691936 6 66150 10 

GS 

10% 415192 16 460005 15 761422 13 195029 18 

30% 416911 18 462047 18 761625 14 219624 19 

50% 415762 17 458883 14 762909 15 108567 16 

70% 418897 19 462631 19 763696 16 219941 20 

90% 420405 20 460632 17 764555 17 131456 17 
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deterministic model still outperforms the stochastic model (i.e., TD > TS). When 

considering only the percentage of informed drivers, 70% and 50% still outperform the 

other values. 

Overall, both minimizing travel time and using the deterministic shortest path model 

generally produce lower MSE. This finding is somewhat unexpected. Further 

investigation is needed to determine whether the larger error from minimizing 

generalized cost item is due to factors influencing evacuation route choice behavior that 

have not yet been fully integrated into the simulation, such as accessibility and service 

facilities. Additionally, the deterministic shortest path should perform better in a smaller 

scale simulation in non-emergency situations where there is little or no variation in the 

available paths drivers may choose between any given OD pair. It may be helpful to test 

the current simulation with additional storm scenarios to draw a more generalized 

conclusion. Aside from the surprising findings described above, the percentage of 

informed drivers was found to be approximately 50-70%, which seems to be a realistic 

distribution. 

Table 7. Traffic volume analysis by 6 hour intervals 

 

Loc 

ID 
015-NB 067-EB 063-WB 008-WB 

Route I-55 I-10E I-10W US-90 

Inf 

Dr 
MSE Rank MSE Rank MSE Rank MSE Rank 

TD 

10% 9809447 15 7744803 6 19042168 4 2057602 9 

30% 8420460 2 7383030 5 19352408 5 2059030 14 

50% 8923687 7 7296839 4 21664730 14 2057292 7 

70% 8829048 6 8433380 9 20333659 11 2056549 2 

90% 8757385 4 7007185 3 16972842 3 2059696 15 

TS 

10% 9479095 14 8645632 11 20039304 7 2054446 1 

30% 9299509 13 6683490 2 21634375 13 2056972 5 

50% 8939774 8 6055745 1 9126674 1 2057022 6 

70% 8579382 3 8354584 8 20104873 8 2057619 10 

90% 9025125 10 8027006 7 16877208 2 2057572 8 

GD 

10% 8797058 5 8462773 10 22287037 15 2056934 4 

30% 9123278 11 9015012 12 20283787 10 2058728 12 

50% 9023832 9 9246823 13 20515125 12 2056829 3 

70% 8332915 1 9782815 14 20110383 9 2058882 13 

90% 9140031 12 10766355 15 19834206 6 2058622 11 

GS 

10% 14039609 16 11962653 16 25386172 16 5911026 17 

30% 15270646 17 15768984 17 30093321 17 6441848 18 

50% 16316400 18 18298578 18 31600428 18 5286708 16 

70% 18035163 19 21519605 19 33785708 19 9767559 19 
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Loc 

ID 
015-NB 067-EB 063-WB 008-WB 

Route I-55 I-10E I-10W US-90 

Inf 

Dr 
MSE Rank MSE Rank MSE Rank MSE Rank 

90% 20190322 20 26530704 20 39997866 20 13701722 20 
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Conclusions 

This project simulated the hurricane evacuation behavior choices of households with 

models developed in the past and simulated evacuation traffic patterns in the last 72 hours 

prior to the landfall of Hurricane Ida. In this process, the challenges of collecting data to 

generate synthetic populations, the shift of local demographics over the last decade, 

lessons learned in model transferability, and updates to the traffic simulation with drivers’ 

route choice behavioral parameters integrated were discussed to facilitate upgrading 

traditional evacuation simulations to digital twin creation for future storm responses. This 

process also emphasizes that human components, including demographic profiles and 

behavior choices, should not be overlooked in the process of creating digital twins for 

disaster responses. The following is a summary of major findings, including implications 

for practice and future studies. 

Synthetic Populations  

The best current data sources to generate synthetic populations in the U.S. are the Public 

Use Microdata Sample (PUMS) and the American Community Survey (ACS). However, 

simulating a hurricane before 2013 has become challenging due to the availability of 

various datasets for all of the factors needed to generate these populations. This 

highlights the importance of data sharing and management. However, sharing data for all 

of the years for public inquiry may be challenging due to database maintenance 

limitations.  

Local Demographics  

The total population, average household size, average household vehicle ownership, and 

census zone boundaries have all changed in the study region in the last decade. These are 

essential factors that influence evacuation traffic generation, which necessitates that 

researchers be careful in using proper datasets in their simulations. Additionally, many 

ongoing issues, including the changing of local landscapes due to natural disasters and 

paradigm shifts such as managed retreat, can influence local demographics long term and 

thus affect local disaster management plans. 
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Model Application and Transferability  

Storm location by time affects parameter setup for the lognormal distance function used 

in the evacuate/stay and departure timing joint choice models. Additionally, destination 

risk perceptions significantly influence household destination choices, which are 

potentially associated with real-time storm track forecasts rather than the best storm 

track. Values for both factors could be updated in real time with live storm feeds. Note 

that the updates are related to factor value updates (i.e., external conditions) rather than 

behavioral model parameter updates (i.e., internal choice mechanisms). In this study, the 

prediction error can be controlled within 5% without updating behavioral model 

parameters. This means that evacuation choice mechanisms can remain the same from 

storm to storm. 

Integrating Drivers’ Route Choice Parameters into Traffic Simulation  

In this study, the best set of route choice parameters is minimizing travel time in the 

stochastic shortest path model with a medium number of informed drivers. Further 

studies should be performed in other storm scenarios to determine if and how this set of 

parameters may vary. It should be noted that several perspectives, including simulation 

road network corrections (e.g. lane connectors and roadway/intersection geometry) and 

traffic signal timing plan improvements, should be utilized in updating a traditional traffic 

simulation framework to achieve a better virtual environment for evacuation traffic 

simulation and subsequent digital twin creation. 

The findings outlined above are expected to be helpful in making models previously 

estimated for a local region useful for predicting the hurricane evacuation-related choices 

of households in new storm scenarios. Such applications and improvements will make 

use of existing resources and reduce efforts for data collection. However, the current 

study also has limitations that necessitate further research, such as developing statistical 

models to better set up parameters in the lognormal distance function and measuring 

household destination risk perceptions using social media feeds. Additionally, census data 

are typically released with an unavoidable time lag in practice. For example, the 2018-

2022 American Community Survey (ACS) 5-Year Estimates were released in December 

2023. As the Atlantic hurricane season begins in June 2024, the census data available for 

population synthesis are backdated to reflect local demographics in 2022. For future 
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research, a reliable synthetic population dataset for a current year needs to be generated 

to create a successful digital twin that reflects real world conditions.  

There are also several limitations that require further research in simulating evacuation 

traffic. Currently, only one item (i.e., interstate highways) is considered in the generalized 

cost function. Additional items should be considered, and their coefficients can be tested 

and estimated via traffic simulation. Comparisons could then be made against evacuation 

route choice models estimated with household survey data. Additionally, this study used 

traffic observations from the week before Hurricane Ida made landfall as the background 

traffic. Future research could use real-time traffic flow data or human mobility data 

collected via mobile devices to adjust the percentage of background traffic loading for 

different routes to create a better performing digital twin. 
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Recommendations 

In its current version, the HEMP can provide statistics, such as the number of evacuees 

and average evacuation traffic speed/time in 6 hour intervals from 72 hours prior to storm 

landfall, to evaluate when and where to issue an evacuation order and determine when 

and where bottlenecks exist to support traffic operations for congestion mitigation. 

From an academic perspective, advances in communication technologies make collecting 

and transmitting near-real-time data possible, which makes the concept of digital twins 

possible in transportation applications. An important difference between a digital twin 

and traditional evacuation simulation is the ability to absorb real-time information, which 

is expected to create a virtual environment that more closely corresponds to real world 

conditions [68]. Upgrading existing evacuation simulations to create digital twins could 

be a cost-effective approach to better understand what real-time input is needed. This 

approach could also work in regions that have a limited number of sensors that can 

provide data to support machine/deep learning models as the sole input for digital twin 

creation. The efforts made in creating such digital twins will better support disaster 

management with accessible, understandable, and useful outputs from computational 

models. Such a process would require collaborative partnership between academic and 

public agencies. 

From an implementation standpoint, computer-generated simulation results should be 

evaluated, trained, and improved by utilizing the human knowledge, experience, and 

instincts accumulated throughout years of practice after disasters. Creating academic-

public partnerships for tool improvement, testing, and use would require additional 

resources, such as purchasing computing resources and developing training activities. 

Within the current project capacity, the following implementation-related activities could 

be pursued in the near term: 

• Involve the research team in disaster response exercises, allowing them to run the tool 

and gain a better understanding of its use in practice.  

• Include research team members in disaster response trainings, allowing them to 

interact with emergency managers and operators to better understand their needs. 

• Create internship opportunities for students to grow the future workforce in this field. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

AASHTO American Association of State Highway and Transportation Officials 

ACS American Community Survey 

ArcGIS Geographic Information System software by ESRI 

AReBIC A reservation-based intersection control algorithm 

CAV Connected and Autonomous Vehicle 

cm centimeter(s) 

COVID-19 Coronavirus Disease 2019 

DYNEV Dynamic Network Evacuation 

EB eastbound 

ETIS Evacuation Traffic Information System 

FHWA Federal Highway Administration 

FL Florida 

ft. foot (feet) 

GD Minimize Generalized Cost, Deterministic Shortest Path Model 

GD90% Minimize Generalized Cost, Deterministic Shortest Path Model, and 

90% Informed Drivers 

GISDK Geographic Information System Developer's Kit 

GS Minimize Generalized Cost, Stochastic Shortest Path Model 

GPU Graphics Processing Unit 

HEMP Hurricane Evacuation Modeling Package 

HES Hurricane Evacuation Studies 

HINCP Household Income  

HURREVAC Hurricane Evacuation System 

in. inch(es) 

InfDr Informed Drivers Percentage 

IPU Iterative Proportional Updating 

ISE Integrated Scenario Ensemble-based Evacuation 

LADOTD Louisiana Department of Transportation and Development 

lb. pound(s) 

LTRC Louisiana Transportation Research Center 

m meter(s) 

MSE Mean Squared Error 

NB northbound 
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Term Description 

NHC National Hurricane Center 

NOLA New Orleans 

NP Number of persons associated with a household record 

OD Origin-Destination 

OREMS Oak Ridge Evacuation Modeling System 

PTV Vissim A microscopic simulation program for multi-modal traffic flow 

modeling 

PUMA Public Use Microdata Area 

RAM Random Access Memory 

SB southbound 

Std Dev Standard Deviation 

SUMO Simulation of Urban Mobility 

TS Minimize Travel Time, Stochastic Shortest Path Model 

TD Minimize Travel Time, Deterministic Shortest Path Model 

TransCAD A software for transportation planning by Caliper 

TRANSIMS Transportation Analysis and SIMulation Systems 

TransModeler A based traffic simulation platform for doing wide-area traffic 

planning, traffic management, and emergency evacuation studies 

UE User Equilibrium 

VEH Number of Vehicles available to a household record 

VLADIMIR Variable Legend Assessment Device for Interactive Measurement of 

Individual Route Choice 

WB westbound 

ZCTA Zip Code Tabulation Area 
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