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Abstract 

This study presents a resilient control scheme for a hybrid DC microgrid (HDCMG) 

integrating solar photovoltaic (PV), battery storage (BESS), and piezoelectric (PE) 

energy harvesting modules. The microgrid is designed to power lighting systems in 

transportation and infrastructure, with PE modeled using real traffic data for practicality. 

The proposed Reinforcement Learning (RL)-based method was tested against four severe 

failure scenarios: load-side short circuit, sudden load changes, open circuit, and converter 

failure. Compared to a Conventional PI controller, the RL-based controller showed 

marginal improvement in one scenario and significant improvement in three others, 

demonstrating its robustness for microgrids with high uncertainty, such as those using 

solar and PE harvesters for road lighting systems. 

The study highlights the growing importance of renewable energies (REs) in microgrid 

systems for environmental benefits. While traditional power sources remain dominant, 

renewable sources such as wind and PV are gaining prominence. Piezoelectric devices, 

converting environmental vibrations into electrical energy, are explored as supplementary 

energy sources, particularly for generating electricity in railroads and roadways. 

A Material Testing System (MTS) was used to simulate pressure on PE components, 

improving control and stabilizing voltage fluctuations. The hybrid microgrid includes PV 

systems, BESS, and PE modules, with detailed explanations of power ratings and 

converter configurations. The study emphasizes a direct power management strategy, 

combining low-power PV panels with PE modules, thus providing a cohesive energy 

solution without batteries. Further research is suggested to assess the economics, 

reliability, and durability of piezoelectric modules, highlighting the potential of the 

proposed control scheme to enhance microgrid resilience and efficiency. 
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Introduction 

The integration of renewable energy sources into transportation infrastructure is 

becoming increasingly important to address environmental concerns and improve energy 

sustainability. Solar PV systems and piezoelectric devices are particularly promising due 

to their ability to harness renewable energy. Solar panels convert sunlight into electricity, 

while piezoelectric modules generate energy from mechanical stress, such as vibrations 

from passing vehicles. This dual approach not only reduces reliance on conventional 

energy sources but also enhances the resilience of energy supply systems for critical 

infrastructure like road lighting. 

The primary objective of this research was to develop a robust control strategy for the 

HDCMG that could efficiently manage the energy flow from these sustainable sources to 

the road lighting systems. The project aimed to ensure consistent lighting performance, 

thereby improving road safety, even under varying environmental conditions and load 

demands. To achieve these objectives, the research team designed a control system that 

optimizes the energy distribution from the solar PV and piezoelectric modules to the road 

lights. The system was tested under different scenarios to evaluate its performance and 

adaptability. The use of advanced control algorithms allowed for real-time adjustments to 

energy distribution, ensuring that the road lights remained operational and efficient. By 

leveraging sustainable energy sources, this project not only contributes to reducing the 

carbon footprint of transportation infrastructure but also enhances public safety through 

improved road lighting. The successful implementation of this microgrid system 

demonstrates the potential for renewable energy technologies to play a critical role in 

modern infrastructure projects. 
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Literature Review 

Renewable energies (REs) have been increasingly popular for modern microgrid (MG) 

systems because of their environmental safety and ability to address pollution concerns 

[1]. Although nuclear, hydro, and thermal power generation continue to be the primary 

sources of power globally [2], wind turbines and photovoltaic (PV) power generation 

technologies are gradually gaining prominence. However, their effectiveness is heavily 

reliant on meteorological conditions [3]. As a result, the majority of turbine plants are 

strategically situated on mountains and seashores to efficiently harness the wind. 

Alternatively, photovoltaic (PV) systems can be put into buildings and diverse structures, 

including rooftops and road tactile pavement [2,3]. Another source is piezoelectric (PE) 

devices, which could convert environmental vibrations into electrical energy. However, 

their power generation capabilities were not adequate for use as primary sources of 

power. Instead, they were commonly employed in low-power applications such as 

sensors, quartz watches, and portable charging devices [4]. The writers in [5] used a 

buck-boost converter in the absence of sensors to optimize power for PE energy 

harvesting. Utilizing PE technology for energy harvesting has various benefits. It offers a 

potential source of sustainability and RE by enabling the conversion of mechanical 

energy that would otherwise be wasted into electrical power [6]. Nevertheless, due to 

their affordable price and less demand for maintenance, PE devices are presently being 

investigated for their possible usage in generating substantial electricity in railroads and 

roadways [7]. Based on research and road testing conducted by the California Energy 

Commission, it has been determined that a PE power generation system installed in a 

single lane of a one-mile road may produce an annual electricity output of 72,800 

kilowatt-hours [8]. To provide a workable harvested energy configuration for pedestrian 

deployment, the study in [9] highlighted the various strain elements that are impacted by 

the energy produced by a PZT (Lead Zirconate Titanate) energy-harvesting floor tile 

(EHFT). A variety of methods for obtaining energy from PE sensors are shown in Figure 

1, ranging from low-power wearables to energy sources found in pedestrian traffic.  
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Figure 1. Different Approaches to Piezoelectric Energy Harvesting 

 

 

A voltage feedback-based technique was utilized by a power management integrated 

circuit to harvest energy from PE components [10] and in [11], a PE micro-actuating 

system was subjected to an adaptive controller, which incorporated an anti-windup 

compensator. In DC-DC converters, PEs were also employed as resonators. In [12], they 

were utilized in an inductor-less step-up converter for more efficient operations, and in a 

self-bias flip rectifier for tracking the maximum power point [13]. Earlier research 

concentrated on sources and converters separately to increase energy extraction from PE 

sources or decrease converter size. Yet each source requires its controller when paired 

with its specific converter. Conversely, [14] introduced a novel approach for hybrid 

power systems. By using a direct power management strategy to combine a low-power 

PV panel with a PE harvesting module, this method provides a more cohesive and 

efficient energy harvesting solution. There is no need for batteries because the system is 

directly connected to the grid. The study’s authors demonstrate the efficiency with which 

the PE module generates RE. The proposed system lacks an energy storage system (ESS), 

which may enhance the utilization of the produced RE. It is well known that mechanical 

vibrations and the surrounding environment have a significant influence on how much 

energy PV and PE devices can produce. The research team in this study describes a 

hybrid microgrid (HMG) system in this study that operates in parallel and is intended for 

smart road applications. The technology combines battery storage (BESS), integrated PE 

components, and solar PV cells. To create the required voltage, the team used a Material 

Testing System (MTS) to simulate different pressure situations on the PE components. 
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The goal in creating a model predictive RL controller for the PE system was to improve 

control and stabilize abrupt voltage fluctuations. This all-encompassing strategy enhances 

energy harvesting while guaranteeing steady and dependable power transmission, 

increasing the usefulness and efficiency of smart infrastructure.  

The arrangement of the document is as follows: The experimental results from the MTS 

machine are presented in Section 2, with a focus on an analysis of the embedded PE 

sensor performance, which is intended to mimic the impacts of vehicle traffic on a 

roadway. The MG configuration and the power electronics circuits designed for each 

energy source are covered in Section 3. In Section 4, the performance of the MG during 

islanded operation is assessed and the proposed controller is implemented in detail. To 

evaluate the proposed controller’s resilience, Section 5 compares its effectiveness with a 

conventional Proportional-Integral (PI) controller across a range of fault scenarios. 

Section 6 outlines the completion of the investigation and provides recommendations for 

more research. 
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Objective 

The project’s primary objective was to improve roadway lighting schemes by 

incorporating sustainable resources and intelligent control systems. Plans and activities 

are designed to meet two primary objectives: 

 Improve energy diversification that enables enhanced road lighting 

 Intelligently control electric power delivery to lights. 

 



—  14  — 

 

 

Scope 

Material Testing Machine and Piezoelectric Data 

Testing System 

The testing apparatus used for the sample evaluations is the 810 Material Testing System 

depicted in Figure 3, equipped with servo-hydraulic loop functionalities. During testing, 

samples were loaded for 0.1 seconds and unloaded for 0.9 seconds, simulating a truck 

traveling at speeds of 60-70 mph. Two boundary conditions were employed: 1) simply 

supported and 2) fully supported. Two types of tests were conducted: 1) single haversine 

waveform loading and 2) multiple haversine waveform loading. Single haversine loading 

represents a single truck or car moving over the pavement system, while multiple 

haversine loading simulates two or more trucks with varying loads moving over the 

pavement system. 

Embedment of Piezoelectric Sensors in Fiber-Reinforced Concrete Samples 

The PE sensors were embedded at a depth of 1/8 inch from the bottom center of the fiber-

reinforced concrete samples. This placement ensures that maximum bending occurs at the 

center of the sample under load, generating the highest possible voltage due to 

tensioning. In these samples, the boundary condition was simply supported. The loading 

frequencies for both single and multiple haversine loading were set at 1 and 10 Hz, with 

loads ranging from 650 lbf to 3200 lbf. Given that the flexural strength of the fiber-

reinforced concrete beam is approximately 5900 lbf, the maximum load was capped at 

3200 lbf. The sample of the made concrete is shown in Figure 3. The effects of single and 

multiple vehicle loads on piezoelectric sensors installed in fiber-reinforced concrete are 

depicted in Figure 2. The sensors produce a peak voltage of approximately 0.5 V when 

subjected to a single haversine load; however, when subjected to multiple loads, the 

voltage decreases to approximately 0.14 V because the concrete’s increased stiffness 

limits voltage generation and deformation. 
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Figure 2. Load and voltage profiles for the concrete sample 

 

Piezoelectric Sensors in Asphalt Samples 

In the asphalt samples, PE sensors were placed between the asphalt and rubber layers to 

maximize bending and voltage generation when the load was applied. For single 

haversine loading and multiple haversine loading of asphalt, the loading frequencies were 

5 and 10 Hz, with loads ranging from 270 lbf to 370 lbf. In multiple haversine tests, the 

loading varied from 320 lbf to 400 lbf with frequencies of 1 Hz, 5 Hz, and 10 Hz. For 

both testing scenarios, the boundary condition was simply supported. The maximum load 

was set at 400 lbf to avoid exceeding the asphalt’s flexural strength of approximately 600 

lbf. Figure 5 displays a sample of the manufactured asphalt. The implications of single 

and multiple vehicle loads on piezoelectric sensors embedded in asphalt are depicted in 

Figure 4. Since the asphalt is less firm and can withstand more deformation, the sensors 

can produce up to 10 V when subjected to successive haversine stresses. The material’s 

impact on voltage generation is demonstrated by the fact that, under a single haversine 

load, the voltage output is likewise larger than in concrete samples for the same reason. 
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Figure 3. 810 Material Testing System with Concrete Sample 

 

In the fiber-reinforced concrete samples, lower voltage outputs were observed due to their 

higher stiffness. Conversely, asphalt samples exhibited higher voltage outputs because of 

their lower stiffness. 

 

Hybrid DC Microgrid Configurations and Setup 

In the proposed hybrid power system shown in Figure 6, a PV system, Bess, and PE 

module are used as power sources. This section offers a comprehensive explanation of 

each power source, including their power ratings, converter configurations, and detailed 

mathematical models. 
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Piezoelectric 

The two testing techniques were single-haversine waveform loading and multiple- 

haversine waveform loading. Single-haversine loading replicates the system of a single 

truck or car moving on the pavement with a constant load. The movement of two or more 

trucks over the pavement system while towing varying loads is replicated in multiple 

haversine testing. In this experiment, the PE model of the Piezo Ceramic Generator 

SM411 was used. It measures 79x18x1.5 mm and has a static capacitance of 110nF ± 

30%. This PE module is displayed in Figure 7. PEs are low-voltage components; thus, to 

create the necessary voltage for them to be used as a power source on a highway, they 

must be connected in series. 

Figure 4. Load and voltage profiles for the asphalt sample 

 

Rectifier 

A two-phase harvesting circuit is utilized to optimize power extraction from various 

dynamic sources. Figure 8 shows this procedure in action. The current produced by the 

PE components is first transformed into direct current. It is briefly held in a capacitor Ci 
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while Vin is maintained at the ideal rectifier voltage Vrec. Capacitor (Ci) rectified power 

is sent to the load bus via a DC-DC converter. Using this technique, the load bus is 

guaranteed to receive the most power possible from the vibrating PE element. PE 

modules are connected in series to guarantee the correct output voltage for the controller 

and boost converter to convert the source bus voltage to the intended load bus voltage. 

DC-DC Boost Converter 

The boost converter utilizes a high-frequency power switch that alternately charges and 

discharges the capacitor (C) and inductor (L) via two power electronic switches: a 

regulated switch (Q) and a diode (D). The general circuit of a boost converter is shown in 

Figure 10. This model ignores the resistance on the equivalent series resistance of the 

capacitor, the resistance while the switch is on, and the resistance when the diode is off. 

The output voltage of the converter can be changed by altering the length of the input 

pulses; using PWM pulse frequency necessitates a smaller inductor. Equation 1 can be 

used to determine the duty cycles required for a boost converter in Continuous 

Conduction Mode in which η is the efficiency of the power conversion. 

𝐷max = 1 −
𝑉in min × 𝜂

𝑉Loadbus 

(1) 

Figure 5. Asphalt Sample 
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When compared to Continuous Conduction Mode (CCM), the boost converter’s 

operation in Discontinuous Conduction Mode (DCM) is much different. With DCM, 

every switching cycle results in a zero inductor current. The duty cycle computation is 

impacted by this. The duty cycle DCM for a boost converter in DCM may be calculated 

by taking into account the inductor current ripple as well as the energy balance on the 

inductor and the capacitor. The maximum duty cycle in DCM can be approximated by 

Equation 2: 

𝐷DCM =
1

1 + √
2𝐿 ⋅ 𝑓𝑠 ⋅ 𝜂 ⋅ 𝑉Load bus 

𝑅 ⋅ 𝑉in min 
2

(2)
 

 

A boost converter exhibits a non-linear relationship between the duty cycle and the output 

voltage due to the non-linear characteristics of the inductor. The current flow through an 

inductor increases exponentially as the voltage drop across it decreases exponentially. 

There is an exponential relationship between the inductors’ current and voltage during the 

charging period. The inductor voltage vl and inductor current il have an exponential 

relationship with the inductor charging time. The voltage across an inductor of a boost 

converter determines the output voltage in a direct proportion. At a fixed operating 

frequency, there is a link between the output voltage and duty cycle. This exponential 

relationship causes a boost converter’s output voltage and PWM duty cycle to be non-

linear. When the duty cycle increases in a boost converter, the output voltage first climbs 

until it peaks at a specific point and then starts to fall. Changes in the duty cycle relative 

to the voltage curve are caused by the load that is connected to the converter. This 

behavior is depicted in Figure 9. 

Solar 

Power electronics interfaces, such as DC converters, are necessary to control the DC 

output voltage produced by a PV system. The DC output voltages generated by PV arrays 

can be greatly impacted by several parameters, such as irradiance, shadowing effects, 

ambient temperature, surface cleanliness, and mismatched photovoltaic modules. Solar 

PV modules are usually coupled in series to boost the voltage output. 
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Figure 6. Overall Schematic of the Hybrid DC Microgrid 

 

Figure 7. Piezoelectric Sensor 
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Figure 12 illustrates a basic DC-DC buck converter configuration consisting of a power 

switch (Q), switching controller, diode (D), inductor (L), capacitor (C), and DC load bus. 

As a step-down mechanism, the DC-DC buck converter lowers an input voltage to an 

output value that is consistently less than the input voltage. This simulation, which takes 

place over a brief time, has 48 volts as the input voltage and 1000 irradiance. With the 

controller’s help, the buck converter lowers the voltage to the load bus voltage. The duty 

cycle and output voltage of the buck converter have a more linear connection than that of 

the boost converter. The output voltage increases linearly with an increase in the duty 

cycle. This happens because the inductor receives the input voltage when the switch is 

on, and it transfers its energy to the load bus when the switch is off, smoothing the output 

voltage. Non-idealities including switching losses, parasitic capacitance, and inductor 

resistance can cause non-linearity in real-world applications. The efficiency and 

performance of a buck converter are influenced by the internal resistance of the inductor, 

also known as the series resistance (RL). Figure 11 illustrates this phenomenon. 

Battery 

The ability of the bidirectional DC converter to switch the direction of power flow and 

transfer power between two DC sources is well known. To efficiently handle this power 

transfer—which is essential for battery charging and discharging—two switches work 

together. Two MOSFETs are used as the switches in this instance. The connection 

between the load bus and the converter and battery is depicted in Figure 13. 

Figure 8. Two-stage Circuit for Piezoelectric Energy Harvesting 
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Figure 9. Output Voltage vs Duty cycle with Various Amount of Load for Boost Converter 

 

Two finely regulated switches are managed to accomplish the bidirectional conversion. A 

DC-DC converter that can step up or decrease the input voltage is called a buck-boost 

converter. It combines the features of boost and buck converters so that, depending on the 

switch’s duty cycle, the output voltage can be either greater or lower than the input 

voltage. The output voltage Vout in an ideal buck-boost converter is connected to the duty 

cycle D and input voltage Vin using the following equation: 

𝑉out =
𝐷

1 − 𝐷
× 𝑉in (3) 
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Figure 10. Boost Converter Circuit 

 

Figure 11. Output Voltage vs Duty cycle with Various Amount of Load for Buck Converter 
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Figure 12.  Schematic of a Buck Converter 

 

Figure 14 illustrates how this equation shows that for 0 < D < 1, the output voltage grows 

as the duty cycle increases. A buck-boost converter’s performance in real-world 

applications can be impacted by non-idealities such as switching losses and inductor 

resistance (RL). Both the buck-boost converter’s output voltage and efficiency are 

impacted by the inductor’s internal resistance (RL). The ideal voltage conversion ratio is 

changed by the voltage drop across RL throughout the on-time and off-time. 

Approximating the real output voltage Vout in light of the voltage drop across RL is 

possible. 

 

𝑉out ≈
𝐷 × (𝑉in − 𝑖𝑙 × 𝑅𝐿)

1 − 𝐷
(4) 

Where the average inductor current is denoted by il.  

This formula demonstrates how the output voltage is decreased by the RL. Because of the 

unique design of the converter, the output voltage in a buck-boost is negative. A negative 

output voltage is produced when the input voltage’s polarity is reversed by the buck-

boost converter [15]. The configuration of the switching elements and inductor causes 

this inversion. Furthermore, the buck-boost converter in our system functions as a boost 

converter because the battery is in discharge mode. The configuration of the proposed 

DCHMG can be seen in TABLE 1. 
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Figure 13. Schematic of a Buck-Boost Converter with Battery Source 

 

Figure 14. Output Voltage vs Duty cycle with Various Amount of Load for Buck-Boost Converter 

 

Table 1. Specification of the Hybrid Microgrid 
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Methodology 

Reinforcement Learning 

Power electronics and power systems have made substantial use of RL. RL is used in 

electric cars (EVs) to improve battery utilization and energy management [16]. RL 

increases efficiency in the field of electrical machines and converters [17], and it 

enhances autonomy and resilience in MGs [18]. Sequential decision-making under 

uncertainty can be modeled using the Markov Decision Process (MDP) technique. 

Various statuses and behaviors are taken into consideration when creating an MDP. It is 

described as a five-element tuple (𝛿, 𝐴, 𝑇, 𝑅, 𝛾), in which the action space is represented 

by 𝑎𝑡 ∈ 𝐴 and the MG's state space by 𝑠𝑡 ∈ 𝛿. 𝑠𝑡 denotes the preferred course of action at 

time 𝑡 ∈ ℝ+. A machine learning method based on trial and error is called RL. Through 

the use of a reward system, an RL agent actively experiments with various control actions 

in its environment, observing the dynamics by tracking results. The environment in an 

MDP gives a vector showing its state, 𝑠𝑡 ∈ 𝛿, at each time step 𝑡 ∈ ℝ+[? ]. The agent (or 

control policy) sends a suitable action 𝑎𝑡 in response to the perceived state 𝑠𝑡. Next, a 

scalar reward 𝑟𝑡+1 = 𝑟(𝑠𝑡, 𝑎𝑡) is given to the agent. The state will develop to 𝑠𝑡+1 ∈ 𝛿 as 

a result of this action's impact on the environment, which is represented by the state-

transition probability 𝑝(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡). A correspondence, 𝜋, between the state and the 

action, which can be either deterministic or stochastic, serves as a representation of the 

policy. The following yields the entire discounted reward 𝜏 : 

                                                        𝑅𝑡 =∑  

∞

𝑘=0

𝛾𝑘𝑟(𝑠𝑡+𝑘, 𝑎𝑡+𝑘)                                                    (5) 

 

Regression 

The Q-table becomes unfeasible when Deep Q-Learning is applied in scenarios where the 

state-action space is large or infinite. This challenge can be solved by reconstituting the 

Q-table using a non-linear form, like function approximation, which treats the task as a 

supervised learning task similar to regression. The rising ability of deep neural networks 

to handle complicated systems with high dimensions made them an attractive option for 
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estimating the action value function. This methodology's inception dates back to Mnih et 

al.'s 2015 debut of Deep Q-Network (DQN) [19]. Deep Q-Learning has challenges that 

make the Q-table unfeasible when dealing with settings where the state-action space is 

large or infinite. This problem can be resolved by reconstructing the Q-table in a non-

linear form, like function approximation, and treating it as a supervised learning task akin 

to regression. Power electronics converters can use regression to find a relationship 

between input and output variables. Regression analysis is mostly used in power 

electronics converters to predict the value of the input signal to obtain the intended output 

[20]. 

The connection between the input and output variables varies depending on the type of 

converter. Certain relationships might only be solved by non-linear regression as the 

boost converter, whereas others might be solved by linear regression as the buck 

converter, which has been used in this paper. The solution to linear regression involves 

fewer steps and less processing power than non-linear regression [21]. A polynomial of 

degree 𝑛 is represented as Equation 6: 

𝑦 = 𝛽1𝑥
𝑛 + 𝛽2𝑥

𝑛−1 + 𝛽3𝑥
𝑛−2 +⋯+ 𝛽𝑛 (6) 

A linear equation is used in the statistical technique known as linear regression to 

represent the association between one or more autonomous variables (𝑋) and an affiliate 

variable (Y). Finding the optimum line of best fit that can accurately forecast the value of 

Y given a value of 𝑋 is its primary objective. Equation 10 is the expanded linear 

regression formula for several independent variables [22]. 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽𝑘𝑋𝑘 + 𝜀 (7) 

Although deep reinforcement learning-based controllers perform exceptionally well on 

high-end computers, their limited computational capacity makes them unsuitable for end 

devices such as microcontrollers. To efficiently utilize this strategy on microcontrollers 

with limited processing capacity, this work combines a regression-based optimization 

technique with a more straightforward Q-table-based method [21]. 

Suggested Approach 

Regression is used in the control system described in this paper to determine the best 

controller policy. It is based on RL. The duty cycles of the converter and the load quantity 
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highly influence how well it performs, and support vector separation has all 

in this paper have been mapped using the RL model. The duty cycle as well, as the 

relationship between load impedance, is nonlinear. To supply the required PWM signal, 

the model makes use of a second-order exponential formula as the guideline. To enhance 

the guidelines system makes use of optimization based on nonlinear backwardness. 

Nonlinear regression techniques are employed by the RL model to improve the policy 

through the use of Q-table data. The PWM of the duty cycle acts as the model's action, 

while the output impedance of the load acts as its state. It features an immediate load 

impedance and a voltage-tracking loop. The output voltage at the load bus and the shunt 

voltage drop are used to track the load impedance. Equations 8 show how the RL model 

is applied to the Q table update. After deciding if the current action is better than the 

previous one for the given state, the procedure logs the reward for the current state-

activity pair. With a single operation, the controller can provide the desired result under 

any condition. As such, the team does not need to consider prospective future benefits in 

addition to past rewards when rewarding any state-action pair. 

𝑆𝑅max =

{
 

 
𝑆𝑛𝑅  if 23.9 <  voltage < 24.1

 and SnR =∣  voltage − 24 ∣

 and 𝑆𝑅max < SnR
𝑆𝑅max  otherwise 

(8) 

Where, it starts by obtaining the PWM and voltage readings. It will compute the highest 

reward 𝑆𝑅max for the current state if the voltage is between 23.9 and 24.1 . It then 

computes the new reward 𝑆𝑛𝑅 as the absolute difference between the voltage and 24 . In 

the event that 𝑆𝑅max is less than 𝑆𝑛𝑅, the process will update 𝑆𝑅max to 𝑆𝑛𝑅 before 

coming to an end. 

To implement the proposed controller in this experiment, state-action pairing rewards are 

first recorded in a reward matrix. An initial policy function is defined by the controller, 

and it is optimized. Subsequently, the software determines whether to add a reward for a 

new state-action pair by analyzing data from the 𝑄 table. If this is the case, regression 

iterations are used by the software to improve and optimize the policy function. The 

policy function is used to generate the appropriate PWM signals after the load impedance 

has been measured. This is illustrated by Algorithm1. 
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A randomly chosen second-order exponential function serves as the policy's initial value. 

The controller generates PWM data that powers the converters of the MG, which 

switches loads attached to its output at predetermined intervals. The policy function 

begins to optimize when the duty cycle, which adapts to different load scenarios, as 

shown in (9). 
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Figure 15. Reinforcement Learning Controller in the Proposed DC Microgrid 

 

𝑓(𝑅𝑛) = 𝑎𝑒
𝑏𝑅𝑛 + 𝑐𝑒𝑑𝑅𝑛 (9) 

The RL agent will compute 𝑎, 𝑏, 𝑐, and 𝑑 using the described policy, where the values are 

𝑎 = 6.56, 𝑏 = −0.54, 𝑐 = 0.31, and 𝑑 = −0.032. These values will be applied to the 

transfer function for the boost converter. As the duty cycle changes to account for 

changing loads, the policy function for the buck converter begins to optimize, as 
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demonstrated in 10, but now employs a linear function as the buck converter has a linear 

rather than exponential behavior, as depicted in Figure 11. 

𝑓(𝑅𝑛) = 𝑎𝑅𝑛 + 𝑏 (10) 

Following this strategy, the RL agent computes the coefficients a and 𝑏, which have the 

values 𝑎 = 0.00839, 𝑏 = 0.4897. In order to compare the suggested MG controller to 

the PI in terms of robustness, four failure scenarios will be examined. Figure 15 shows 

how RL is implemented in the DCHMG. 
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Discussion of Results 

Short Circuit Across the Load 

Typically, in DCHMG systems, failures in power converters related to the AC side, 

including voltage source converters or short circuits in transmission and distribution 

lines, may result in AC side breakdowns. Conversely, DC faults can be short-circuit faults 

such as arc, line-to-ground (L2G), and line-to-line (L2L). When a system malfunctions, 

converters' operating points drastically change [23]. The DC load bus voltages will drop 

and vary if the controller cannot handle such situations, which will de-energize the entire 

system. Furthermore, there is a chance of fire dangers based on the nature and location of 

the fault. Thus, it is imperative that short-circuit defects be taken into account when 

evaluating the resilience and reliability of converters [24]. In light of the previously 

indicated concerns, we carried out a comparison analysis to illustrate the resilience of the 

suggested approach. Tests were conducted using a short-circuit fault state across the load 

on both the PI and the suggested technique. Figure 16 illustrates how the fault occurred at 

t=1 and was fixed at t=1.1. As can be shown in Table 2, the RL outperforms the PI in 

terms of performance, with an approximately 6% lower overshoot and a reduced 

undershoot of about 11%. Furthermore, the RL is considerably diminished with the peak-

to-peak value. While the RL performs better overall, its steady-state error is slightly 

greater than that of the PI. 
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Figure 16. Voltage Response with Short Circuit Across Load 

 

A bar chart comparing the integral of absolute error (IAE), integral of time-weighted 

absolute error (ITAE), and integral of squared error (ISE) is shown in Figure 17. In SC 

fault circumstances, the RL-based control approach works better than the PI, resulting in 

reduced IAE, ITAE, and ISE values. This demonstrates how well it can minimize 

deviations from the target amount of load voltage when compared to a PI. 

 



—  34  — 

 

 

Figure 17. Control Metrics Comparison for the Short Circuit 

 

Converter Failure 

The breakdown of a converter has similar negative consequences in a DCHMG but with 

unique subtleties. The associated loads' power supply being disrupted is the immediate 

result. In DCHMGs, voltage stability is especially important, and when it fails, the 

system as a whole may experience significant voltage variations[25]. Tests were applied 

on both RL and PI in the failure of one of the converters. This failure occurred at 𝑡 = 1 

and was rectified at 𝑡 = 1.1, as seen in 18.TABLE 2 shows that the RL controller 

performs better in terms of both overshoot and undershoot; but, because of the harshness 

of the scenario, the improvements are not statistically significant. Still, the RL performs 

better than of PI. 
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Figure 18. Voltage Response with Converter Failure 

 

A comparison bar chart between IAE, ITAE, and ISE error measurement criteria is shown 

in Figure 19. With lower control metric values during converter failure, the RL 

outperforms the PI in terms of performance. In comparison to the PI, this highlights its 

capacity to keep load voltage closer to the desired level and hence minimize deviations. 
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Figure 19. Control Metrics Comparison for Converter Failure 

 

Load Variation 

One of the important duties of the controllers in a DCHMG is to oversee the installation 

and removal of loads. During these transitions, the controller must efficiently restore and 

maintain voltage stability to guarantee the overall stability and reliability of the MG. To 

assess this situation, Figure 20 shows how a significant load was added to the system at 

𝑡 = 1. With an undershoot of over 8% and a steady-state error of approximately 3% less 

than the PI, the RL performs noticeably better than the PI. 
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Figure 20. Voltage Response with sudden changes in the load 

 

Figure 21 presents a bar chart that contrasts the error metrics of the two controllers. It 

demonstrates that the ISE of the RL is roughly 3% lower than that of the PI and that its 

IAE and ITAE are nearly 2% lower. 

Figure 21. Control Metric Comparison for Load Variation 
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Open Circuit of the Load 

When parts are detached for normal maintenance or equipment replacement, there may 

be a brief period of an open circuit. This may happen without the previous notice of the 

maintenance crew and the engineers, so the controller must be able to restore voltage to 

its nominal value. Any break or disconnect in the electrical channel that stops electricity 

from passing through the circuit and causes the linked load to lose power is known as an 

open circuit. To replicate this, a breaker disconnects the load at 𝑡 = 1 and reconnects it at 

𝑡 = 1.1. The controller is responsible for restoring voltage during this scenario. The RL 

shows less undershoot and overshoot by almost 2% and much less peak-to-peak amount 

than the PI. Although the steady-state error of RL is slightly more, the overall 

performance of RL is better, as depicted in Figure 22. 

Figure 22. Voltage Response with Open Circuit Across the Load 

 

According to Figure 23, the suggested controller has IAE and ITAE control metrics that 

are over 2% and 4% lower, respectively, than the PI. 
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Figure 23. Control Metrics Comparison for Open Circuit Across the Load 

 

A thorough comparison of the two controllers is given in Table 2. The acronyms used in 

the table are: CF for Converter Failure; LV for Load Variation; OCL for Open Circuit of 

the Load; and SCL for Short Circuit across the Load Variation. 

Table 2. Controllers Behaviors Under Various Fault Scenarios 
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Conclusions 

This study introduces a resilient control scheme for a hybrid DC microgrid (DCHMG) 

integrating solar, battery storage, and piezoelectric harvesters. The MG serves as an 

energy hub to supply electricity to lighting systems in the transportation sector, such as 

roads. In this study, the piezoelectric harvesters were modeled using experimental data 

from a traffic simulator. The proposed RL method was tested under four severe and 

unexpected failure scenarios: a short circuit at the load side, a sudden and severe change 

in load, an open circuit, and converter failure. The performance of the control scheme 

was compared with a benchmark controller (i.e., PI control scheme). Results show the 

effectiveness of the proposed controller in improving the resilience of the energy hub 

under test.  
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Recommendations 

In the future, it is essential to further assess the economics, reliability, and durability of 

piezoelectric modules to enhance their viability in practical applications. 
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