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Abstract 

Concrete is a widely used material in civil infrastructures and is known for its durability, 

strength, and versatility. Due to aging and degradation, regular monitoring of the physical 

and functional health of concrete structures is essential to ensure safety and serviceability. 

Concrete surfaces are prone to damage, including cracks, which are critical indicators of 

structural integrity. In recent years, computer vision techniques have gained more 

attention for the structural health monitoring of bridges and have shown accurate 

performance for structural condition assessment. Nonetheless, existing approaches suffer 

from several drawbacks, such as being computationally expensive and needing long 

training time, which present a hurdle to developing a real-time structural monitoring 

system. In addition, traditional crack detection methods, relying on manual inspections, 

are limited by human error, time constraints, and accessibility issues. To tackle these 

challenges, this study proposed a smart monitoring platform employing deep learning and 

unmanned aerial vehicles (UAVs). A computer vision-based deep learning approach was 

developed to analyze images captured by UAVs from laboratory experiments on concrete 

beams and field studies of two bridges. By integrating deep learning architectures, such 

as convolutional neural networks for spatial feature extraction and long short-term 

memory for temporal analysis, the proposed monitoring system achieved 99.5% 

accuracy. The results demonstrated the effectiveness of the proposed platform for 

improving the accuracy and efficiency of bridge health monitoring, with the potential for 

further enhancement through larger datasets and optimized UAV deployment. 
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Introduction 

Concrete is a fundamental construction material widely used in critical civil 

infrastructure, including bridges, buildings, dams, roads, and tunnels, due to its superior 

durability, strength, longevity, and versatility. Its application in civil infrastructure is 

widespread and continues to expand over time [1] [2]. Regular and reliable monitoring of 

the physical and functional health of concrete structures is essential due to aging, 

degradation, and fatigue load, to ensure safety and serviceability [3]. Concrete surfaces 

experience various types of damage, including cracks, corrosion, delamination, and 

spalling throughout their lifespans. Cracks are vital indicators of structural integrity, 

making them a key parameter in structural health monitoring. Conventional crack 

detection methods rely on point-by-point human visual inspection, which is limited by 

the inspector’s experience, time constraints, restricted access to certain areas, high costs, 

labor intensity, and potential safety hazards for the inspector. These challenges necessitate 

the need to incorporate advanced automated technologies and adopt innovative non-

contact approaches to enhance the overall efficiency of crack detection [4] [5]. 

To address the limitations of conventional crack detection, this research introduced an 

innovative computer vision-based method integrated with employing unmanned aerial 

vehicles (UAVs) to improve the accuracy and efficiency of detecting cracks in concrete 

civil infrastructure. Computer vision, a domain within artificial intelligence, encompasses 

advanced computational techniques to analyze and process data to identify patterns in 

images or videos collected by UAVs and detect anomalies for concrete structural 

assessment [6]. Identifying cracks in images faces challenges such as variation in crack 

appearance, including different sizes, shapes, and orientations, subtle and fine cracks, 

image noise, and complex backgrounds. Computer vision mitigates these challenges 

enabling automated analysis of images to achieve consistent, accurate, and efficient crack 

detection. Deep learning techniques, such as Convolutional Neural Networks (CNN), can 

be trained to process large volumes of images quickly to extract spatial features. These 

features can subsequently be fed into Long Short-Term Memory (LSTM) to analyze 

sequences in data or temporal dependencies, such as the progression of cracks over time 

or the correlation between crack formations [7] [8]. 

Many studies have explored the application of computer vision for crack detection in 

concrete infrastructure. Despite significant advancements in crack detection using 

computer vision techniques for concrete structures, several knowledge gaps remain in the 

current research. First, most of the studies focused on spatial feature extraction by CNN, 

overlooking different aspects of temporal analysis to understand crack progression over 

time. Secondly, many of the existing methods are time-consuming and computationally 

expensive, which often leads to a lack of scalability and real-time processing capabilities, 
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restricting their practical usage in large-scale monitoring. Additionally, some of the 

previous research employing single-method techniques fail to fully exploit the potential 

to integrate various computer vision architectures. Lastly, to train a deep learning model, 

a considerable number of images are required, and conventional inspection techniques are 

restricted by access limitations of manual inspection, which makes it a difficult task. 

To overcome these challenges, this paper proposed a real-time computer vision-based 

technique to detect cracks in concrete infrastructure. By leveraging the innovative 

integration of the CNN algorithm with an LSTM architecture, the method effectively 

identifies cracks in beams and bridges, offering an automated solution that mitigates the 

time consumption and computational complexities associated with conventional methods. 

The novelty of this research stems from combining computer vision, deep learning, CNN, 

and LSTM architectures, along with the deployment of UAVs, to develop a robust system 

for automated data collection and sequential data classification. The proposed CNN-

LSTM algorithm was trained and evaluated using image data from experimental studies 

on laboratory-cast beams subjected to shear-dominant loadings, as well as images 

captured during field study from two bridges in Minden, Louisiana. 

The results of this study demonstrate the capabilities, limitations, and optimal conditions 

for UAV-assisted inspections of concrete surfaces, including beams and bridges to 

enhance accuracy and facilitate data collection for early crack detection. Furthermore, it 

validated the effectiveness and applicability of leveraging the CNN-LSTM deep learning 

framework to accurately detect and classify cracks. Overall, this paper contributes by 

introducing an advanced efficient structural health monitoring method for concrete 

infrastructure to reduce the failure rate and ensure the durability and reliability of critical 

civil infrastructure. 
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Literature Review 

In recent years, the use of unmanned aerial vehicles (UAVs) equipped with vision sensors 

for bridge inspection has garnered significant attention in different countries due to its 

safety and reliability. Rakha et al. [9] conducted a comprehensive review of the use of 

Unmanned Aerial Systems (UAS) for building performance analysis and energy audits, 

proposing a standardized framework for UAS operation. Kim et al. [10] proposed an 

automated crack detection technique for concrete surfaces in on-site environments using 

a CNN trained with diverse image classes, including field images and real-time UAV 

video frames, thereby advancing the potential for replacing traditional visual inspections. 

Freimuth et al. [11] developed an integrated and automated UAV inspection workflow, 

utilizing a 3D planning environment to generate collision-free flight paths based on BIM 

data, validating the approach through a case study. Ding et al. [12] developed a UAV-

based approach for the accurate detection and quantification of concrete cracks without 

reference markers, introducing an improved calibration method and an independent 

boundary refinement transformer (IBR-Former) for enhanced crack segmentation. Kim et 

al. [13] introduced a UAV-based crack identification system that integrates hybrid image 

processing with ultrasonic displacement sensing to accurately measure crack width and 

length in concrete structures. 

Many studies have explored the application of computer vision for crack detection in 

concrete infrastructure. Solhmirzaei et al. [4] proposed an approach employing CNN 

architecture on images collected in an experiment to detect major and minor cracks in 

Ultra-high-performance Concrete (UHPC) members. Kim et al. [14] introduced a method 

to identify cracks on aging concrete bridges using region with CNN-based transfer 

learning (R-CNN) and measured the crack size with a square-shaped marker.  Li et al. 

[15] presented an image-based crack detection method utilizing CNN by modifying 

AlexNet for concrete surfaces. Golding et al. [16] proposed a CNN architecture on 

40,000 RGB pre-trained images with VGG16 for image processing of concrete surfaces. 

Cha et al. introduced methods using CNN and R-CNN to detect anomalies such as 

concrete cracks and steel delamination and corrosion [17] [18]. Dorafshan et al. [7] 

conducted a comparative analysis of edge detection algorithms and deep convolutional 

neural networks (DCNNs) for crack detection in concrete structures. Deng et al. [19] 

provided a comprehensive review of computer vision-based crack analysis 

methodologies, highlighting both qualitative and quantitative approaches for civil 

infrastructure. Dinh et al. [20] developed a computer vision-based method for automatic 

concrete crack detection using histogram thresholding to distinguish cracks from 

background noise.  
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Objective 

Despite significant advancements in crack detection using computer vision techniques for 

concrete infrastructure, several knowledge gaps remain in the current research. First, 

most of the studies focused on spatial feature extraction by CNN, overlooking different 

aspects of temporal analysis to understand crack progression over time. Second, many of 

the existing methods are time-consuming and computationally expensive, which often 

leads to a lack of scalability and real-time processing capabilities, thereby restricting their 

practical usage in large-scale monitoring. Additionally, some of the previous research 

employing single-method techniques fail to fully exploit the potential of integrating 

various computer vision architectures. Lastly, to train a deep learning model a 

considerable number of images are required, and conventional inspection techniques are 

restricted by access limitations of manual inspection. which makes it a difficult task. 

To overcome these challenges, this paper proposed a real-time computer vision-based 

technique to detect cracks in concrete infrastructure. By leveraging the innovative 

integration of the CNN algorithm with an LSTM architecture, the method effectively 

identifies cracks in beams and bridges, offering an automated solution that mitigates the 

time consumption and computational complexities associated with conventional methods. 

The novelty of this research stems from combining computer vision, deep learning, CNN, 

and LSTM architectures, along with the deployment of UAVs, to develop a robust system 

for automated data collection and sequential data classification. The proposed CNN-

LSTM algorithm was trained and evaluated using image data from experimental studies 

on laboratory-cast beams subjected to shear-dominant loadings, as well as images 

captured during field study from two bridges in Minden, Louisiana. 
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Methodology 

Figure 1 provides an overview of the proposed structural monitoring crack detection 

method using a CNN-LSTM model with UAV technology. The study comprises three 

distinct phases. The initial phase focuses on comprehensive image collection to serve as 

the dataset for the deep learning model. This phase is subdivided into two parts: (1) 

experimental studies and laboratory testing on reinforced concrete beams, and (2) field 

studies on two concrete bridges. In the laboratory, a UAV equipped with high-resolution 

cameras and sensors captured images of various crack conditions during shear-dominant 

loading tests, ranging from intact to fully cracked. In the field, the UAV gathered crack 

images from two bridges under real-world conditions. 

The second phase focused on developing a robust and reliable deep learning model to 

process and analyze the collected data. This model leverages convolutional neural 

networks (CNNs) integrated with long short-term memory (LSTM) units to enhance its 

capabilities. A comprehensive explanation of CNN and LSTM, along with the 

implementation of the proposed model architecture, is provided in Section 2.2. The final 

phase concentrated on detecting and classifying cracks in concrete surfaces. Using the 

well-trained deep learning model on the collected images detected the presence and exact 

locations of cracks. This phase began with data preprocessing and model training, 

including hyperparameter tuning to optimize performance and achieve optimal results. 

The model classifies the dataset into two groups (cracked and uncracked), performs 

object detection, and highlights crack areas with rectangular bounding boxes. 
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Figure 1. Proposed smart bridge monitoring approach employing deep learning and UAV  

 

2.1. Data Collection 

2.1.1. Experimental Study (Laboratory Testing) 

The dataset for this study was derived from experiments performed in a laboratory setting 

by the authors. This involved the fabrication and testing of two reinforced concrete beams 

subjected to shear-dominant loading conditions. The experimental variables in casting 

two beams included variations in the composition of the concrete mix (utilizing steel 

fibers in one beam), sectional properties (such as the quantity and layout of stirrups), and 

the loading test setup. Each beam was fabricated with a high-strength concrete mix with 

differential spacing of stirrups along the longitudinal reinforcement bars. In one of the 

beams, steel fibers were incorporated into the mix along with longitudinal and transverse 

reinforcements. Both beams were in a rectangular cross-section, with a dimension of 8 

feet in length, 9 inches in width, and 12 inches in depth. Illustrations of sectional 

dimensions and reinforced configurations of casted beams are depicted in Figure 2. 
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Figure 2. Beams layout and cross section for experimental tests 

 

Response parameters, such as failure loads, failure patterns, and crack propagation were 

measured during tests and employed during the assessment of structural response for two 

beams under shear-dominant stress. The test setup was designed to evaluate the shear and 

flexural behavior of the beams with a four-point loading setup. This setup applied a dual-

point loading on the beam's upper surface, executed via a displacement-controlled 

actuator (MTS machine with a capacity of 120 KN). Incremental loading was applied to 

the beams, and crack propagation image data were collected at different load levels 

utilizing a UAV and a stand-alone camera, both strategically placed two meters distance 

from the beam surface for optimal data capture. Data acquisition with a high-resolution 

camera of the UAV is discussed further in Section 2.1.3. Figure 3 displays the beam 

casting process, the experimental setup, and the data acquisition using the UAV. 

Furthermore, the sample of data collected via UAV during the experimental test is shown 

in Figure 4 as intact and cracked. 
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Figure 3. Data collection for experimental studies   

 

 

(a) Reinforced concrete mold for 

casting beams 

(b) Casting beams in Laboratory 

(c) Test setup (d) Data acquisition utilizing UAV 
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Figure 4. Illustration of intact and cracked concrete beams from experiments 

 

2.1.2. Field Study  

The field study was conducted on two reinforced concrete bridges located in Minden, 

Louisiana. Data acquisition was carried out employing a UAV, operated manually by a 

certified UAV pilot from the Louisiana Department of Transportation and Development 

(DOTD). This ensured full compliance with safety regulations and operational guidelines. 

Additionally, necessary permits and registrations were obtained in advance to ensure 

public safety and adherence to legal requirements. 

During the flight missions, the UAV was navigated around the lateral sides and 

undersides of the bridges. The pilot utilized remote control along with the UAV's obstacle 

avoidance technology to navigate around bridges efficiently. High-resolution images 

were captured at multiple points using the UAV’s onboard camera. These images were 

stored directly on the UAV’s internal storage card. The data collected during the field test 

is shown in Figure 5 as cracked and non-cracked. To ensure data accuracy and minimize 

data discrepancies, regular calibration of the UAV's sensors and cameras was conducted. 

The operational duration of the UAV flight was constrained by its battery life, limiting 

each flight to approximately 20 minutes. This restriction resulted in a reduced coverage 

area per flight, necessitating multiple missions for data collection on the bridges. 

Different weather conditions such as extreme temperatures, wind, and rain also frequently 

disrupted flight schedules and prolonged the field study. Additionally, poor lighting 

conditions, areas inaccessible to UAVs, GPS signal obstructions, and environmental 

interferences such as traffic vibrations and local wildlife caused significant challenges for 

data collection. 

(a) Intact (non-cracked) (b) With crack 
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Figure 5. Data collected from bridges using UAV 

 

2.1.3. Image acquisition with a high-resolution camera on the UAVs 

Datasets for both experimental and field studies were collected by UAV. The priority in 

utilizing UAVs was ensuring safety and reliable flight operation by following the 

guidelines. For this research, an EVO II Pro V3 UAV, equipped with a Sony 20-

megapixel 1-inch CMOS image sensor camera, was employed (Figure 6). These 

components were connected via a gimbal manufactured by Autel pilot UAV. The gimbal 

allowed the camera to tilt from -130° to +45° and pan from -100° to +100°. The camera 

had a resolution of 5472 × 3076 pixels with a 16:9 aspect ratio. The UAV was manually 

operated during the flights, maintaining a distance of approximately 2 meters from the 

beams while scanning their surface and taking pictures. Nearly 5,000 images were 

captured for the beams, and approximately 120 images were taken for bridges, in both 

cracked and non-cracked conditions. 

(a) With crack (b) With crack (c) Intact (non-cracked) 
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Figure 6. Autel Evo II pro V3 UAV used for data/image collection 

 

2.2. Deep Learning Model Development 

2.2.1. Convolutional Neural Network (CNN) 

Convolutional Neural Network, known as CNN, is one of the most commonly used 

supervised deep learning methods, inspired by the biological mechanism of the animal 

visual cortex and mostly employed for image recognition, classification, and 

segmentation [21]. CNN is comprised of an input and output layer, along with several 

hidden layers, including convolutional layers, pooling layers, activation functions, and 

fully connected layers [22]. 

The convolutional layer, the fundamental component of CNN, performs convolutional 

operations to extract features of input data with a set of filters or convolutional kernels 

and generates feature maps. Each kernel is a small matrix that convolves with input data 

and slides over the input images with a fixed stride until all receptive fields are covered. 

The convolutional layer uses the same set of weights across the input and captures the 

local dependencies which reduces the number of model parameters and enhances the 

efficiency of the training network. 

Following each convolutional layer, a pooling layer is employed to reduce the spatial 

dimensions of the feature maps, thereby decreasing the number of calculations and 

avoiding overfitting. The pooling layer's primary function is to select essential features, 

ensuring feature invariance and consequently lowering the number of parameters and the 

computational complexity. This down-sampling process contributes to better 

generalization and faster convergence of the model. Average pooling and max pooling are 

two commonly used pooling techniques. In max pooling, the highest value from a set of 
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neurons in the previous convolutional layer is selected for the new layer, while average 

pooling transmits the mean value of a set from the preceding layer to the next. 

The final layer of the CNN model is fully connected, serving as a classifier by performing 

a series of nonlinear transformations on the feature map derived from the convolution and 

pooling operations to compute class scores and generate an output. Fully connected 

layers link each neuron in one layer to every neuron in the subsequent layer, similar to a 

traditional neural network. At the end, a flattened matrix is passed through the fully 

connected layer to classify the images. 

After each convolution operation to introduce non-linearity into the model and improve 

the network's representation ability, non-linear activation functions are employed. 

Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and Tanh, 

as presented in equations 1, 2, and 3. ReLU is the most widely used as it helps to address 

the vanishing gradient problem and improves convergence speed during network training. 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                                        [1] 

𝜎(𝑥) =
1

1 + 𝑒𝑥 𝑝(−𝑥)
                                                          [2] 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥𝑝(𝑥) − 𝑒𝑥𝑝(−𝑥)

𝑒𝑥𝑝(𝑥) = 𝑒𝑥 𝑝(−𝑥)
                                        [3] 

During the model’s training process, the loss function is calculated by measuring the 

error between the model's output and the target output. This error is then backpropagated 

through the network to update the weights of the filters and neurons. The chain rule is 

employed to derive the gradients of the loss with respect to each weight. Weight 

optimization is performed using algorithms such as gradient descent or its variants (e.g., 

SGD, Adam) [21-24]. 

2.2.2. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) network is an enhanced version of standard 

recurrent neural networks (RNNs), specifically designed for capturing long-term 

dependencies and overcoming the gradient vanishing issue in RNNs. It achieves this by 

levering a gating mechanism and a memory unit.  As a result, LSTM networks are more 

effective in processing time series data and long sequences, such as in time series 

forecasting, natural language processing, and speech recognition tasks [25]. Figure 2 

depicts the structure of the LSTM unit employed in this study. 
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LSTM networks are comprised of two main unit structures (hidden unit  ℎ𝑡, and memory 

unit 𝐶𝑡), along with three gate structures: an input gate(𝑖𝑡), a forget gate(𝑓𝑡), and an 

output gate (𝑜𝑡). The gating mechanism in LSTM networks enables the selection of input 

information and updates the state of the memory unit, thus facilitating the recording of 

long-term historical information and its transmission. 

In an LSTM network, the cell state progresses along the entire sequence directly, with 

linear interactions, while the hidden state carries the output information to the next time 

step or other layers of the stacked LSTM structure. The forget gate's primary role is to 

decide which information from the previous cell state should be discarded, thus 

facilitating selective forgetting. Equation 4 shows the forget gate functions, where 𝑥𝑡 is 

the current input, ℎ𝑡−1 is the previous hidden state, 𝑊𝑓 is the weight of the forget gate, 𝑏𝑓 

is the bias, and σ is the sigmoid function. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                [4] 

The input gate regulates that the extent of the new value flows is incorporated into the 

cell state, determining what part of the new input is significant. In Equations 5 and 6, 𝑖𝑡 is 

the input gate activation, 𝐶𝑡 is the candidate cell state, and ReLU is the activation 

function. 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1 + 𝑏𝑖])                                                        [5]  

𝐶𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝑐. [ℎ𝑡−1 + 𝑏𝑐])                                            [6] 

In Updating Memory Unit State, the new cell state results from the combination of the 

old cell state and the new candidate cell state. Equation 7 illustrates the corresponding 

linear function. 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡. 𝐶𝑡                                                             [7] 

The output gate determines which part of the cell state to output, filtering the information 

and sending it as the LSTM cell's output. Equations 8 and 9 illustrate the corresponding 

functions which, 𝑜𝑡 is the output gate activation and ℎ𝑡 is the new hidden state. Figure 7 

depicts a schematic of the LSTM model used in this study [26]–[28].  

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                 [8]  

ℎ𝑡 = 𝑜𝑡. 𝑅𝑒𝐿𝑈(𝐶𝑡)                                                               [9] 
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Figure 7. The LSTM model architecture  

 

2.2.3. Architecture of the Proposed CNN-LSTM Model 

In this study, a combination of CNN and LSTM architecture was designed to leverage the 

strengths of both spatial feature extraction and temporal sequence modeling for the 

purpose of crack classification and object detection. The architecture of the CNN model 

consists of three convolutional layers, to extract high-dimensional spatial features of the 

input image dataset which are denoted as CNN features. The first convolutional layer 

employs 32 filters with a fixed 3×3 kernel size, the second layer utilizes 64 filters, and the 

third convolutional layer uses 128 filters. Each convolutional layer is followed by the 

ReLU activation function to introduce non-linearity and a down-sampling layer known as 

the max pooling layer with a kernel size of 2×2 to reduce the spatial dimension, highlight 

critical features, and enhance the generalization and convergence of the model.  

The extracted spatial features of input images by the CNN architecture are then flattened 

and reshaped to serve as input for the LSTM model. The first layer of LSTM comprises 

128 units, followed by the second LSTM layer with 64 units, both using ReLU as an 

activation function. Temporal dependencies and sequential patterns are captured by these 

layers. The sigmoid activation function is employed in the final dense layer to give a 

single value as an output for the binary classification task, predicting the cracked or intact 

output images to indicate the structural conditions of beams and bridges. The architecture 

of the CNN-LSTM model is depicted in Figures 8 and 9, and the information regarding 

each layer within the model is presented in Table 1.  
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Figure 8. Schematic of the computer vision-based approach 

 

Figure 9. Schematic of the CNN-LSTM architecture 
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Table 1. Details of the layers of the deep learning architecture 

Layer 

 

Operator Output Shape 

(Height × Width × 

Depth) 

Kernel 

(Height × 

Width) 

Number of 

Parameters 

Layer 1 Conv 1 (Conv2D) / ReLU 98 × 98 × 32 3 × 3 896 

Layer 2 Max Pooling 1 49 × 49 × 32 2 × 2 0 

Layer 3 Conv 2 (Conv2D) / ReLU 47 × 47 × 64 3 × 3 18496 

Layer 4 Max Pooling 2 23 × 23 × 64 2 × 2 0 

Layer 5 Conv 3 (Conv2D) / ReLU 21 × 21 × 128 3 × 3 73856 

Layer 6 Max Pooling 3 10 × 10 × 128 2 × 2 0 

Layer 7 Flatten 12800 - 0 

Layer 8 Reshape 1 × 12800 - 0 

Layer 9 LSTM 1 / ReLU 1 × 128 - 6619648 

Layer 10 LSTM 2 / ReLU 64 - 49408 

Layer 11 Dense / Sigmoid 1 - 65 

2.3 Crack Identification with Deep Learning Model 

2.3.1. Dataset Preprocessing  

To prepare the raw images of the collected dataset for final processing within the 

proposed CNN-LSTM architecture, a series of preprocessing steps were conducted. 

These steps comprised cropping, resizing, shuffling, splitting, and normalization. Initially, 

images were cropped and resized to focus solely on the surfaces of the beams and 

bridges, and extraneous parts of the surrounding environment were eliminated. This step 

ensured that only relevant portions of the images were retained. Subsequently, the 

processed images were employed to form our dataset for the proposed architecture. 

During this stage, each image was uniformly resized to 227×227 pixels to maintain 

consistency across the dataset. Following resizing, the pixel values were normalized to a 
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range of 0 to 1. This standardization was essential to enhance training performance by 

providing uniform input for the neural network. 

 

2.3.2. Model Training and Hyperparameters 

In this research, the model was trained on images collected by UAV from laboratory 

experiments of two beams subjected to shear-dominant loading, as well as a dataset of 

images captured from bridges, as described in Section 3. The dataset included 3,000 

images, equally 1,500 images for each class of cracked and intact instances. These 

images then were split into training and test sets. To improve the model's robustness, data 

pre-processing and augmentation techniques such as cropping, resizing, shuffling, 

splitting, and normalization were employed during the training stage. After training the 

dataset using the proposed CNN-LSTM model architecture, the system’s performance 

was evaluated utilizing several metrics such as accuracy, ROC curve, F-1 score, and 

visualization of classification and object detection results. These evaluations were 

conducted to determine the model's effectiveness. 

This study utilized the TensorFlow deep learning framework and Python programming 

language for the model compilation. Simulations were executed on a desktop system 

featuring an Intel Core i7-13700 CPU running at 2.1 GHz, an Intel UHD Graphics 770 

GPU, and 32 GB of RAM. Furthermore, the software environment included Windows 11, 

TensorFlow 2.16.1, and Python 3.11.5, all operated within a Jupyter notebook. 

In deep learning, the selection of hyperparameters is essential for optimal model 

performance, thus necessitating the careful adjustment of the model parameters. In this 

research, the model's hyperparameters were optimized utilizing the control variable 

method, by focusing on the optimizer, learning rate, and test size. Optimizers are 

designed to change the weight of neural networks to minimize the loss function. Common 

optimizers comprise Adam, Stochastic Gradient Descent (SDG), RMSprop, and Adagrad, 

each with a unique algorithm to update weights and provide efficient convergence. The 

learning rate is a crucial hyperparameter that dictates the step size of weight updates 

during the training process. Table 2 illustrates the results of tuning hyperparameters. 

The training process of the model involved 20 epochs, with an average duration of 30 

seconds per epoch. In this classification task, accuracy measures the frequency of correct 

class label predictions and was calculated as the ratio of the number of correct predictions 

to the total number of predictions that happened. Loss, on the other hand, measures the 

degree of alignment between the model’s prediction and the actual data, highlighting the 

discrepancy between the actual and predicted values. The primary objective of the 

training model is to decrease the loss, thus enhancing the model’s overall performance 

and accuracy. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
                       [9] 

 

Table 2. Optimizing hyperparameters of CNN-LSTM model and performance of the model 

Optimizer Learning Rate Test Size Accuracy Loss 

Adam 0.00001 0.15 0.9822 0.0604 

Adam 0.00001 0.20 0.9950 0.0250 

Adam 0.00001 0.25 0.9879 0.0319 

Adam 0.00001 0.30 0.9911 0.0676 

Adam 0.00001 0.35 0.9828 0.0979 

Adam 0.000001 0.15 0.4799 0.6897 

Adam 0.000001 0.20 0.4783 0.6897 

Adam 0.000001 0.25 0.4866 0.6912 

Adam 0.000001 0.30 0.4877 0.6881 

Adam 0.000001 0.35 0.4847 0.6908 

SDG 0.001 0.15 0.4799 0.6933 

SDG 0.001 0.20 0.4783 0.6935 

SDG 0.001 0.25 0.4866 0.6932 

SDG 0.001 0.30 0.4877 0.6930 

SDG 0.001 0.35 0.4847 0.6934 

SDG 0.0001 0.15 0.4799 0.6931 

SDG 0.0001 0.20 0.4783 0.6934 

SDG 0.0001 0.25 0.4866 0.6931 
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Optimizer Learning Rate Test Size Accuracy Loss 

SDG 0.0001 0.30 0.4877 0.6932 

SDG 0.0001 0.35 0..4847 0.6933 

RMSprop 0.0001 0.15 0.9977 0.0193 

RMSprop 0.0001 0.20 0.9966 0.0131 

RMSprop 0.0001 0.25 0.9893 0.0250 

RMSprop 0.0001 0.30 0.9944 0.0210 

RMSprop 0.0001 0.35 0.9514 0.1299 

RMSprop 0.00001 0.15 0.4799 0.6931 

RMSprop 0.00001 0.20 0.6650 0.6863 

RMSprop 0.00001 0.25 0.4866 0.6922 

RMSprop 0.00001 0.30 0.4877 0.6929 

RMSprop 0.00001 0.35 0.4847 0.6937 

Adagrad 0.01 0.15 0.5088 0.6905 

Adagrad 0.01 0.20 0.4783 0.6930 

Adagrad 0.01 0.25 0.4866 0.6920 

Adagrad 0.01 0.30 0.6555 0.6916 

Adagrad 0.01 0.35 0.4847 0.6929 

Adagrad 0.001 0.15 0.4799 0.6932 

Adagrad 0.001 0.20 0.4783 0.6934 

Adagrad 0.001 0.25 0.4866 0.6933 

Adagrad 0.001 0.30 0.4877 0.6931 
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Optimizer Learning Rate Test Size Accuracy Loss 

Adagrad 0.001 0.35 0.4847 0.6934 
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Discussion of Results 

The overall performance of the proposed CNN-LSTM model for structural health 

monitoring of concrete bridges and beams was assessed using UAV-captured images from 

experiments conducted on two beams and the surface of two bridges in the field study. 

Following the pre-processing, the dataset was split randomly into training and test sets. 

To evaluate the impact of different dataset sizes on model performance, five different 

scenarios were considered: 85% training set and 15% test set (Case 1), 80% training set 

and 20% test set (Case 2), 75% training set and 25% test set (Case 3), 70% training set 

and 30% test set (Case 4), and 65% training set and 35% test set (Case 5). The 

performance of the model was measured and presented for each case by using accuracy, 

ROC curve, F1 score, and visualizations of classification and object detection results. The 

performance of the model for each case is illustrated in Table 3. The results demonstrated 

that the highest performance was observed in Case 2. 

Table 3. Performance of the proposed CNN-LSTM model across five cases with varying test set size 

Data Subset Test Size Accuracy AUC F-1 Score 

Case 1 15% 98.22 1.00 0.98 

Case 2 20% 99.50 1.00 0.99 

Case 3 25% 98.79 1.00 0.99 

Case 4 30% 99.11 1.00 0.99 

Case 5 35% 98.28 0.99 0.98 

The results show that the proposed model demonstrated excellent accuracy and reliability 

in detecting cracks. One of the essential metrics to evaluate within the model is the 

confusion matrix, which represents true positive, false positive, true negative, and false 

negative visually. In this study, positive and negative refer to cracked and uncracked 

classes, respectively. Figure 10 represents the confusion matrix for all five scenarios with 

different test sizes. The results indicate that Case 2 performed best (refer to Figure 10(b)), 

with an overall classification accuracy of 99.50%. Specifically, the accuracy for cracked 

beams (positive samples) was 99.3%, while for intact beams (negative samples), it was 

99.7%. 
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The other metric to assess the model’s performance is the ROC Curve, which is 

employed to evaluate the model's ability to differentiate between positive and negative 

classes at various threshold settings. A higher area under the curve (AUC) reflects 

superior model performance and the sensitivity and specificity of the model is indicated 

by the sharp ascent of the ROC curve. Results for the ROC curve are depicted in Figure 

11, highlighting the deep learning model's robustness and efficiency in identifying and 

distinguishing between cracked and intact surfaces, with AUC=1 for almost all cases.  
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Figure 10. Confusion matrix for five cases with different test sizes 

 

Figure 11. ROC curve for each case with different test size 
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The visualization of the predicted and actual instances of both beams and bridges are 

shown in Figures 12 and 13. The results show the effectiveness of the model in correctly 

identifying instances. Note that the amounts 1 and 0 refer to cracked (positive) and 

uncracked (negative), respectively. This visual representation helps to interpret the 

model's performance easily and further confirms the model’s capability to accurately 

distinguish between the two classes.  

Figure 12. Crack classification for dataset collected from experimental beams: 0 refers to intact 

(negative), and 1 refers to cracked (positive) surfaces 
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Figure 13. Crack classification for dataset collected from bridges: 0 refers to intact (negative) and 1 

refers to cracked (positive) surfaces 

 

Figures 14 and 15 illustrate the results for the object detection applied to concrete 

surfaces; to identify and locate cracks. a rectangular bounding box is drawn around the 

detected cracks. Overall, it is expected that enlarging the dataset and integrating a broader 

range of data will significantly enhance the performance of the proposed CNN-LSTM 

model in identifying cracks in beams and bridges. 
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Figure 14. Cracks object detection for concrete surfaces of experimental beams 
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Figure 15. Cracks object detection for concrete surfaces of the bridges 

 

Moreover, as shown in Table 2, researchers evaluated the performance of our model using 

various optimizers, learning rates, and test set sizes to determine the optimal combination 

to achieve the highest accuracy and the lowest loss. The table presents the results of these 

assessments. Notably, the Adam optimizer, with a learning rate of 0.00001, consistently 

achieved high accuracy (above 98%) and low loss across different test sizes, indicating its 

robustness and reliability. Similarly, the RMSprop optimizer, with a learning rate of 

0.0001, demonstrated outstanding performance, achieving perfect accuracy across all test 

sizes. In contrast, the SGD and Adagrad optimizers showed lower and more variable 

performance, particularly at lower learning rates, suggesting they are less suitable for this 

task. These findings highlight the effectiveness of the Adam and RMSprop optimizers for 

training the model, with the Adam optimizer (learning rate of 0.00001) being the most 

consistently reliable choice. 
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Conclusions 

In this research, a novel method for structural condition assessment of concrete beams 

and bridges was presented by integrating a CNN-LSTM computer vision model with the 

utilization of UAV for data collection. The proposed method employs CNN to extract 

high-dimensional spatial features from the input and LSTM to extract time-series features 

of the dataset. A total of 3,000 images of cracked and non-cracked concrete surfaces were 

captured in both laboratory and field tests and were randomly split to train and test the 

proposed CNN-LSTM architecture. Various test sizes were evaluated, with the best 

performance achieved using 80% of the data for training and 20% for testing. The model 

demonstrated an accuracy of 99.5% on the testing dataset. 

The implemented framework effectively utilized the well-trained model and showed 

highly effective performance in accurately detecting cracks, despite being trained on a 

limited dataset. Confusion matrix, ROC curve, f-1 score, and visual representation of 

object detection and classification were implemented to validate the results. Although the 

proposed deep learning model achieved good performance, and the rate of false positives 

and false negatives from the confusion matrix was satisfactory, its performance could be 

further enhanced by incorporating more training data to improve generalization to unseen 

cases. 

Future research could aim to develop models utilizing larger and more diverse datasets or 

integrating other deep learning methods to achieve better performance. Moreover, while 

UAVs offer significant benefits for data collection, they also present limitations, such as 

difficulties in accessing hard-to-reach areas and dependence on weather conditions. 

Future studies could explore optimizing the use of UAVs to overcome these limitations 

and achieve the best results in data collection. 
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Recommendations 

Although the proposed method to detect cracks for concrete surfaces by integrating UAV 

for data collection and the CNN-LSTM model to train and test the dataset performed 

well, some limitations should be noted. One notable challenge was the data collection 

constraint. Despite the benefits of using UAVs in visual inspection of civil infrastructure, 

UAV operation could be significantly challenged by poor lighting, different weather 

conditions such as rain, fog, strong winds, and extreme hot weather, and limited battery 

life of the UAV, which restricts the frequency and timing of data collections in mission 

flight. The other significant limitation of this study is the dependence on a limited dataset, 

since deep learning models generally require extensive and diverse datasets to be trained 

effectively. Thus, the restricted quantity of the dataset may have impacted the model's 

performance. 

To overcome the challenges noted above, future research should consider developing 

advanced UAVs equipped with weather-resistant features, enhanced lighting systems, and 

improved battery technology to ensure the higher quality of collected data. To tackle the 

limitation of a small dataset, future work should focus on expanding the dataset by 

collecting a broader range of data that gathers a variety of types of cracks and damage 

scenarios under different environmental conditions. Furthermore, applying data 

augmentation methods and generating synthetic data can contribute to creating a balanced 

and broad dataset, thereby enhancing the model's training and generalization capabilities. 

Furthermore, future work can explore integrating other hybrid deep learning models and 

transfer learning to leverage pre-trained models on similar tasks and enhance the model's 

accuracy and robustness. 
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Acronyms, Abbreviations, and Symbols 

Term Description 

CNN Convolutional Neural Networks 

in. inch(es) 

LSTM Long Short-Term Memory 

m meter(s) 

UAVs Unmanned Aerial Vehicles 

UHPC Ultra-High-Performance Concrete 
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